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Preface

DLT 2005 was the 9th Conference on Developments in Language Theory. It
was intended to cover all important areas of language theory, such us gram-
mars, acceptors and transducers for strings, trees, graphs, and arrays; efficient
text algorithms; algebraic theories for automata and languages; combinatorial
and algebraic properties of words and languages; variable-length codes; symbolic
dynamics; decision problems; relations to complexity theory and logic; picture
description and analysis; polyominoes and bidimensional patterns; cryptography;
concurrency; and DNA and quantum computing.

DLT 2005 was held at Mondello (Palermo, Italy) during July 4–8, 2005 and
was sponsored by the Department of “Matematica e Applicazioni,” University
of Palermo, the Department of “Informatica e Applicazioni – R.M. Capocelli,”
University of Salerno, and the MIUR Project “Formal Languages and Automata:
Methods, Models and Applications.” The conference was also under the auspices
of EATCS. We are grateful to these organizations.

Previous DLTs were held in Turku (1993), Magdeburg (1995), Thessaloniki
(1997), Aachen (1999), Vienna (2001), Kyoto (2002), Szeged (2003) and
Auckland (2004). Since 2001, a DLT conference takes place in every odd year in
Europe, and in every even year in another continent.

The Program Committee selected 29 papers from 73 submitted papers. The
papers came from the following countries: Austria, Belgium, Canada, Czech Re-
public, Finland, France, Germany, India, Italy, Portugal, Moldova, Russia, Spain,
and the UK. Each submitted paper was evaluated by at least three members of
the Program Committee, who were often assisted by their referees. All 29 selected
papers are contained in this volume together with 6 invited presentations.

We would like to thank the members of the Program Committee for the
evaluation of the submissions and the numerous referees who assisted in this
work. The list of the referees is as complete as we could achieve and we apologize
for any omissions and errors. We are grateful to the contributors to DLT 2005,
in particular to the invited speakers, for the realization of a very successful
conference. We also thank the members of the Organizing Committee and Chiara
Epifanio and Marinella Sciortino in particular whose work behind the scenes
contributed to this volume.

April 2005 Clelia De Felice and Antonio Restivo
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J. Justin
J. Karhumäki
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Restricted Towers of Hanoi and Morphisms

Jean-Paul Allouche1,� and Amir Sapir2

1 CNRS, LRI, Université Paris Sud, Centre d’Orsay, F-91405 Orsay Cedex, France
allouche@lri.fr

2 Department of Computer Science, Ben-Gurion University, Beer-Sheva 81405, Israel
amirsa@cs.bgu.ac.il

Abstract. The classical towers of Hanoi have been generalized in several
ways. In particular the second named author has studied the 3-peg Hanoi
towers with all possible restrictions on the permitted moves between
pegs. We prove that all these Hanoi puzzles give rise to infinite morphic
sequences of moves, whose appropriate truncations describe the transfer
of any given number of disks. Furthermore two of these infinite sequences
are actually automatic sequences.

1 Introduction

The towers of Hanoi have been introduced by the famous French number-theo-
retist Lucas, see [17]. Actually Lucas even invented in 1883 under the pseudonym
Claus (anagram of Lucas) a legend about these towers, see e.g., http://www.cs.
wm.edu/∼pkstoc/toh.html

We recall briefly that this puzzle consists of three pegs and N distinct disks
numbered 1, 2, . . . , N . The disks are all placed on peg 1 in increasing order of
size (smallest disk on top). A move consists of taking the topmost disk on some
peg and placing it on the top of some other peg, with the requirement that no
disk should be covered by a larger one. The purpose is to move all the disks from
peg 1 to some other peg in a minimal number of moves.

While the original game has been extensively studied, several variations have
been proposed: cyclic towers of Hanoi, more than three pegs, colored disks, ....
The reader can read in particular the bibliographies of [2, 5, 14], and the 207-item
bibliography by Stockmeyer available at http://www.cs.wm.edu/∼pkstoc/
biblio.ps

Several papers on Hanoi towers deal with links between the Hanoi puzzle (or
related algorithms) and other objects from mathematics or computer science,
e.g., finite automata [5], morphisms of free monoids [4], Toeplitz sequences [3, 5],
Pascal’s triangle [15], Stern’s diatomic sequence [16].

In [18] the second named author has studied optimal algorithms for the 3-peg
Hanoi puzzle where some moves from a given peg to a given peg are forbidden:
there are five non-isomorphic possibilities (the case where the pegs are aligned
and only moves between adjacent pegs are permitted goes back to [19]; the case

� Supported by MENESR, ACI NIM 154 Numeration

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 1–10, 2005.
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2 Jean-Paul Allouche and Amir Sapir

where the pegs lie on a circle and only clockwise moves are permitted goes back
to [7]). We will prove in this paper that these five possibilities give rise to infinite
sequences of moves that are morphic (a definition is given in the next section)
and such that appropriate prefixes (truncations) of these infinite sequences yield
(possibly up to a small number of final moves) a minimal sequence of moves for
transferring any given number of disks. This generalizes the case of classical and
cyclic Hanoi towers, see [4, 5].

2 Morphic Sequences and Automatic Sequences

We give a short reminder about morphic and automatic sequences (see for ex-
ample [6] for a more complete account).

Let Σ be an alphabet (finite set) and let Σ∗ be the free monoid generated
by Σ (i.e., the set of finite words on Σ equipped with the concatenation opera-
tion). Let h : Σ∗ → Σ∗ be a morphism (i.e., a homomorphism of monoid). The
morphism h is said to be prolongable on a if there exists a letter a ∈ Σ and a
word x ∈ Σ∗ such that h(a) = ax, and, for all k ≥ 0, hk(x) �= ∅. It is then clear
that the following limit exists

h∞(a) := lim
k→∞

hk(a) = ah(a)h2(a)h3(a) · · ·

A sequence u = (un)n≥0 with values in Σ is said to be an iterative fixed point
of the morphism h if h is prolongable on u0. It is then clear that

u = h∞(u0) := lim
k→∞

hk(u0) = u0h(u0)h2(u0)h3(u0) · · ·

Of course the sequence u is then a fixed point of (the extension by continuity
of) h (to infinite sequences).

Definition 1. A sequence u = (un)n≥0 on the alphabet Σ is said to be pure
morphic if it is an iterative fixed point of some prolongable morphism on Σ.

A sequence v = (vn)n≥0 on the alphabet Δ is said to be morphic if it is a
coding of a pure morphic sequence on some alphabet Σ, i.e., if there exist an
alphabet Σ, a morphism from Σ∗ to itself, a map τ from Σ to Δ, and an infinite
sequence u = (un)n≥0 with values in Σ such that u is an iterative fixed point of
h and for each n ≥ 0, vn = τ(un). If, furthermore, the morphism h has constant
length � (i.e., for each letter a ∈ Σ, the length, i.e., the number of letters, of
h(a) is equal to �) the sequence v is said to be �-automatic.

The following result shows how to solve the Hanoi puzzle in the classical and
cyclic cases by using morphic or automatic sequences. Let a, resp. b, c, be the
move that takes the topmost disk from peg 1 and put it on top of peg 2, resp.
from peg 2 to peg 3 and from peg 3 to peg 1 (see Figure 1), and let a, b, c be the
corresponding reverse moves (e.g., a takes the topmost disk from peg 2 and put
it on top of peg 1).



Restricted Towers of Hanoi and Morphisms 3

1 2

 3

a

bc

Fig. 1. The direct moves for the towers of Hanoi

Theorem 1 ([4, 5]).
(i) There exists a sequence u = (un)n≥0 on the alphabet {a, b, c, a, b, c} that is
2-automatic, and such that its prefixes of length 2N − 1 describe a minimal set
of moves in the classical Hanoi puzzle to transfer N disks from peg 1 to peg 2 if
N is odd and from peg 1 to peg 3 if N is even. The sequence u is the iterative
fixed point of the morphism of length 2 defined on the alphabet {a, b, c, a, b, c} by

a→ ac, b→ cb, c→ ba

a→ ac, b→ cb, c→ ba

(ii) There exists an infinite sequence on the alphabet {a, b, c} that is the common
limit of the finite minimal sequences of moves given by Atkinson for the cyclic
towers of Hanoi that permit to transfer N disks from peg 1 to peg 2 or from
peg 1 to peg 3. Furthermore this sequence is morphic: it is the image under the
map ϕ : {f, g, h, u, v, w} → {a, b, c} where ϕ(f) = ϕ(w) := a, ϕ(g) = ϕ(u) := c,
ϕ(h) = ϕ(v) := b of the iterative fixed point of the morphism s defined on
{f, g, h, u, v, w} by

s(f) = fvf, s(g) = gwg, s(h) = huh,
s(u) = fg, s(v) = gh, s(w) = hf

3 3-Peg Towers of Hanoi with Forbidden Moves

3.1 Known Results

All the possible restrictions of moves under which the three-peg Hanoi puzzle
can be solved are given in [18]. Up to “isomorphism” there are only five cases:
these cases are given in Figure 2:

– the complete puzzle uses all possible moves in {a, b, c, a, b, c};
– the three-in-a-row puzzle (“lazy” puzzle) only uses the moves in {a, b, a, b};
– the cyclic puzzle only uses the moves in {a, b, c};
– the complete−− puzzle only uses the moves in {a, b, c, a, b};
– the cyclic++ puzzle only uses the moves in {a, b, c, a}.

In [18] Sapir gives minimal recursive algorithms to solve these five Hanoi
problems. Furthermore he shows that the number of moves for N disks has order
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    Complete

1 2

 3

1 2

 3

1 2

 3

1 2  3 1 2

 3

Cyclic

  Complete−− Cyclic++

Three−in−a−row 

Fig. 2. The five 3-peg Hanoi puzzles

of magnitude λN , where λ is respectively equal to 2, 3, 1 +
√

3, (1 +
√

17)/2,
and the largest root of the polynomial x3 − x2 − 4x + 2 in each of the five cases
above. We will show that these algorithms give more: they permit to construct
infinite morphic sequences of moves from which the moves for N disks can be
easily deduced for any N .

3.2 Morphic Sequences for the Restricted 3-Peg Hanoi Puzzle

We prove the following theorem.

Theorem 2. 1. The five 3-peg Hanoi puzzles with restricted moves give rise to
infinite sequences, obtained as limits of the sequence of moves for N disks when
N goes to infinity. Let us call these sequences the “complete Hanoi sequence”, the
“three-in-a-row Hanoi sequence”, the “cyclic Hanoi sequence”, the “complete−−
Hanoi sequence”, and the “cyclic++ Hanoi sequence”.

2. The five restricted Hanoi sequences are morphic. Furthermore the com-
plete Hanoi sequence is 2-automatic and the three-in-a-row Hanoi sequence is
3-automatic. The morphisms and codings can be given explicitly:

– the complete Hanoi sequence is the iterative fixed point of the morphism

a→ ac, b→ cb, c→ ba

a→ ac, b→ cb, c→ ba

on the alphabet {a, b, c, a, b, c};
– the three-in-a-row Hanoi sequence is the iterative fixed point of the morphism

a→ a b a, a→ a b a, b→ b a b, b→ b a b.
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– the cyclic Hanoi sequence can be obtained as the coding under the map ϕ :
{f, g, h, u, v, w} → {a, b, c} where ϕ(f) = ϕ(w) := a, ϕ(g) = ϕ(u) := c,
ϕ(h) = ϕ(v) := b of the iterative fixed point of the morphism s defined on
{f, g, h, u, v, w} by

s(f) = fvf, s(g) = gwg, s(h) = huh,
s(u) = fg, s(v) = gh, s(w) = hf

;

– the complete−− Hanoi sequence can be obtained as the coding under the
map ϕ : {x, s, z, d, e, f, a, b, c, a, b} → {a, b, c, a, b} defined by

ϕ(x) = a, ϕ(s) = a, ϕ(z) = a,

ϕ(d) = b, ϕ(e) = c, ϕ(f) = b
ϕ(a) = a, ϕ(a) = a,

ϕ(b) = b, ϕ(b) = b,
ϕ(c) = c

of the iterative fixed point of the morphism θ defined by

θ(x) = s b a f, θ(s) = s b a e b s, θ(z) = d a e,

θ(d) = z b s b, θ(e) = f c z, θ(f) = e b x,

θ(a) = a, θ(b) = b, θ(a) = a, θ(b) = b, θ(c) = c.

– the cyclic++ Hanoi sequence can be obtained as the coding under the map
ψ : {x, r, z, t, u, s, a, b, c, a} → {a, b, c, a} defined by

ψ(x) = a, ψ(r) = a, ψ(z) = a,
ψ(t) = b, ψ(u) = c, ψ(s) = c
ψ(a) = a, ψ(a) = a,

ψ(b) = b, ψ(b) = b,
ψ(c) = c

of the iterative fixed point of the morphism η defined by

η(x) = r b a s a, η(r) = r b a u b r, η(z) = t a u,
η(t) = z b r b, η(u) = s a c z c, η(s) = s a c t a s,

η(a) = a, η(b) = b, η(a) = a, η(b) = b, η(c) = c.

Proof (sketch). Our proof will follow the lines of [1, 4, 5]. We define families of
words that describe the restricted Hanoi algorithms. These words converge to
the infinite Hanoi sequences. Since they are locally catenative (roughly speaking
there exists a fixed δ such that the nth word depends on the words indexed by
n − 1, n − 2, ..., n − δ) we can construct morphisms and codings proving that
the sequences are morphic. Note that a general result of Shallit (see [20]) proves
that locally catenative sequences satisfying mild properties are morphic.

Proofs for complete and cyclic Hanoi sequences can be found in [4, 5] so
that it suffices to address the three remaining cases. We are sketching the proofs
(inspired by [5], see also [4] and [20]) for the three remaining cases.
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– Consider the algorithm given in [18] for the three-in-a-row Hanoi puzzle. Let
XN be the sequence of moves on the alphabet {a, b, a, b} that takes N disks from
peg 1 to peg 2, and YN the sequence of moves that takes N disks from peg 1
to peg 3, in the minimal algorithm given in [18]. Then, defining the map g by
g(a) := b, g(b) := a, g(a) := b, g(b) := a, a straightforward consequence of the
algorithm in [18] is that

XN+1 = YNag(XN ) and YN+1 = YNag(YN )bYN

with X1 = a, Y1 = ab. We first note that the two sequences of words (XN )N≥1

and (YN )N≥1 converge to a same infinite sequence (since YN+1 begins with YN

and XN+1 begins with YN ). Let us denote by Y∞ this common limit.
Let us define EN := YNa, FN := YNa, GN := g(EN ), and HN := g(FN ). We

see that E1 = a b a, F1 = a b a, G1 = b a b, and H1 = b a b. Furthermore

EN+1 = EN HN EN

FN+1 = EN HN FN

GN+1 = GN FN GN

HN+1 = GN FN HN

and the sequence of words (EN )N≥1 clearly converges to Y∞. Now let σ be the
morphism defined on the alphabet {a, b, a, b} by

σ(a) = a b a
σ(a) = a b a

σ(b) = b a b

σ(b) = b a b.

we easily see by induction on N that the following four relations simultaneously
hold

σ(EN ) = EN+1, σ(FN ) = FN+1, σ(GN ) = GN+1, σ(HN ) = HN+1.

Hence, for all N ≥ 1, we have σN (a) = EN . This implies that Y∞ = σ∞(a).

– Case of the complete −− Hanoi puzzle. The permitted moves are the elements
of {a, b, c, a, b}. Let us define the following words on this alphabet:
XN is the word given by the algorithm in [18] to transfer N disks from peg 1 to
peg 2,
YN is the word given by the algorithm in [18] to transfer N disks from peg 1 to
peg 3,
ZN is the word given by the algorithm in [18] to transfer N disks from peg 2 to
peg 1,
DN is the word given by the algorithm in [18] to transfer N disks from peg 2 to
peg 3,
EN is the word given by the algorithm in [18] to transfer N disks from peg 3 to
peg 1,
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FN is the word given by the algorithm in [18] to transfer N disks from peg 3 to
peg 2.

A rephrasing of the algorithm given in [18] yields that:

XN+1 = YNaFN

YN+1 = YNaENbYN

ZN+1 = DNaEN

DN+1 = ZNbYN

EN+1 = FN cZN

FN+1 = EN bXN

together with X1 = a, Y1 = ab, Z1 = a, D1 = b, E1 = c, and F1 = b. It is not
hard to see that YN ends in b for any N ≥ 1. We define SN by YN := SNb; hence
S1 = a. The relations above can then be written as

XN+1 = SNbaFN

SN+1 = SNbaENbSN

ZN+1 = DNaEN

DN+1 = ZNbSNb
EN+1 = FNcZN

FN+1 = ENbXN

In particular there exist infinite sequences X∞, Z∞ and E∞ on {a, b, c, a, b} such
that

lim
N→∞

XN = lim
N→∞

YN = lim
N→∞

SN = X∞

lim
N→∞

ZN = lim
N→∞

DN = Z∞

lim
N→∞

EN = lim
N→∞

FN = E∞.

Now, taking the morphism θ and the map ϕ given in the statement of Theorem 2,
we get by an easy simultaneous induction that ϕ(θN (w)) = WN where w is
any of the letters x, s, z, d, e, f and W is the corresponding capital letter in
{X,S, Z,D,E, F}. In particular ϕ(θ∞(s)) = X∞.

– Case of the cyclic++ Hanoi puzzle. The permitted moves are the elements of
{a, b, c, a}. Let us define the following words on this alphabet:
XN is the word given by the algorithm in [18] to transfer N disks from peg 1 to
peg 2,
YN is the word given by the algorithm in [18] to transfer N disks from peg 1 to
peg 3,
ZN is the word given by the algorithm in [18] to transfer N disks from peg 2 to
peg 1,
TN is the word given by the algorithm in [18] to transfer N disks from peg 2 to
peg 3,
UN is the word given by the algorithm in [18] to transfer N disks from peg 3 to
peg 1,
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VN is the word given by the algorithm in [18] to transfer N disks from peg 3 to
peg 2.

A rephrasing of the algorithm given in [18] yields that:

XN+1 = YNaVN

YN+1 = YNaUNbYN

ZN+1 = TNaUN

TN+1 = ZNbYN

UN+1 = VNcZN

VN+1 = VNcTNaVN

together with X1 = a, Y1 = ab, Z1 = a, T1 = b, U1 = c, and V1 = ca. It is not
hard to see that YN ends in b for any N ≥ 1. We define RN by YN := RNb;
hence R1 = a. We also see that VN ends in a for any N ≥ 1. We define SN by
VN := SNa; hence S1 = c. The relations above can then be written as

XN+1 = RNbaSNa
RN+1 = RNbaUNbRN

ZN+1 = TNaUN

TN+1 = ZNbRNb
UN+1 = SNacZN

SN+1 = SNacTNaSN

In particular there exist infinite sequences X∞, Z∞ and S∞ with values in the
alphabet {a, b, c, a} such that

lim
N→∞

XN = lim
N→∞

RN = X∞

lim
N→∞

ZN = lim
N→∞

TN = Z∞

lim
N→∞

UN = lim
N→∞

SN = S∞.

Now, taking the morphism η and the map ψ given in the statement of Theo-
rem 2, we get by an easy simultaneous induction that ψ(ηN (w)) = WN where
w is any of the letters x, r, z, t, u, s and W is the corresponding capital letter in
{X,R,Z, T, U, S}. In particular ψ(η∞(r)) = X∞.

4 Conclusion

Our Theorem 2 above somehow means that all restricted Hanoi puzzles belong
to the same class of “regularity” formed by the morphic sequences. For example,
computing the ith term of a morphic sequence can be done in time at most
polynomial in log i (see [21] where more is proved). On the other hand automatic
sequences form a (strict) subclass of morphic sequences and can be seen as “more
regular”. The computation of the ith term of an automatic sequence can be done
in linear time in log i (this is a consequence of the possible computation by finite
automata with output function, as proved in [10]). Note that a sequence can
well be both morphic with a non-uniform morphism and d-automatic for some
d ≥ 2: for example taking the celebrated Thue-Morse sequence and counting the
number of 1’s between two consecutive zeros, one obtains the sequence
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2 1 0 2 0 1 2 1 0 1 2 0 1 2 0 · · ·
This sequence is both (see [8]) the iterative fixed point of the morphism

2 → 210, 1→ 20, 0→ 1

and the image under the map x → x mod 3 of the iterative fixed point of the
2-morphism

2→ 21, 1→ 02, 0→ 04, 4→ 20.

What can be said about the infinite sequences associated with restricted Hanoi
puzzles? We have seen that the complete (classical) and three-in-a-row Hanoi
sequences are respectively 2-automatic and 3-automatic. We also know that the
cyclic Hanoi sequence is not d-automatic for any d (see [1]). Proving that a given
sequence is not d-automatic for any d is not an easy task and can be done by using
various criteria (frequencies, repetitions, subsequences of certain types, etc.). We
hope to finish up the proof that the only restricted Hanoi sequences that are d-
automatic for some d are the complete and the three-in-a-row Hanoi sequences,
by proving the non-automaticity of the cyclic++ and the complete−− Hanoi
sequences. A hint is that the dominant eigenvalues of the transition matrices of
the morphisms entering the picture are respectively λ1 := (1 +

√
17)/2 and λ2

the maximal root of the polynomial X3 −X2 − 4X + 2. A conjecture of Hansel
(see [11–13] for several results toward a proof) asserts that if the iterative fixed
point of a morphism with dominant eigenvalue λ is also d-automatic and not
ultimately periodic, then (log λ)/(log d) must be rational: this is a generalization
of a theorem due to Cobham for d- and d′-automatic sequences [9]. Under this
conjecture it would suffice to prove that (logλj)/(log d) is irrational for j = 1, 2,
and to prove that the images of the fixed points of the Hanoi morphisms with
dominant eigenvalues λj under the corresponding codings are still non-automatic
(in other words that these codings are not “trivial”). A small step is given in the
proposition below.

Proposition 1. Let λ1 := (1 +
√

17)/2 and λ2 be the maximal root of the poly-
nomial X3 − X2 − 4X + 2. Then, for any integer d ≥ 1, the real numbers
(logλj)/(log d) with j = 1, 2 are irrational.

Proof. It suffices to show that for any integer n ≥ 1 the real numbers λn
j are not

integers.
For λ1: this is clear since for any n ≥ 1 there exist integers sn > 0 and tn > 0

such that 2nλn
1 = (1 +

√
17)n = sn + tn

√
17.

For λ2: if α were an integer such that λn
2 = α, then the polynomial X3 −

X2 − 4X + 2 would divide Xn − α; hence there would exist a polynomial Q(X)
with integer coefficients such that

(X3 −X2 − 4X + 2)Q(X) = Xn − α.

Reducing modulo 2 gives

X2(X − 1)Q(X) ≡ Xn − α mod 2

which would imply that α is both congruent to 0 and to 1 modulo 2, hence the
desired contradiction.
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Abstract. A word w over a finite alphabet Σ is n-collapsing if for an
arbitrary DFA A = 〈Q,Σ, δ〉, the inequality |δ(Q,w)| ≤ |Q| − n holds
provided that |δ(Q, u)| ≤ |Q| − n for some word u ∈ Σ+ (depending on
A ). We overview some recent results related to this notion. One of these
results implies that the property of being n-collapsing is algorithmically
recognizable for any given positive integer n.

Introduction

Let A = 〈Q,Σ, δ〉 be a deterministic finite automaton (DFA, for short) with the
state set Q, the input alphabet Σ , and the transition function δ : Q×Σ → Q.
The action of the letters in Σ on the states in Q defined via δ extends in a
natural way to an action of the words in the free Σ -generated monoid Σ∗ ; the
latter action is still denoted by δ . When we deal with a fixed DFA A = 〈Q,Σ, δ〉,
then, for any w ∈ Σ∗ and Q′ ⊆ Q, we set Q′ . w = {δ(q, w) | q ∈ Q′}. We call
the difference dfA (w) = |Q| − |Q .w| the deficiency of the word w with respect
to A .

Let n be a positive integer. A DFA A = 〈Q,Σ, δ〉 is said to be n-compressible
if there is a word w ∈ Σ∗ with dfA (w) ≥ n. The word w is then called n-
compressing with respect to A . We say that a word w ∈ Σ∗ is n-collapsing
if w is n-compressing with respect to every n-compressible DFA whose input
alphabet is Σ . In other terms, a word w ∈ Σ∗ is n-collapsing if, for any DFA A ,
we have dfA (w) ≥ n whenever A is n-compressible. Thus, such a word is a kind
of a ‘universal tester’ whose action on the state set of an arbitrary DFA with a
fixed input alphabet exposes whether or not the automaton is n-compressible.

The concept of an n-collapsing word arose (under a different name) in the
beginning of the 1990s with original motivations coming from combinatorics and
abstract algebra (cf. [17, 20]). In fact, the notion appears to be fairly natural from
the automata theory point of view as it perfectly fits in Moore’s classic approach
of ‘Gedanken-experiments’ [14]. Over the last few years, automata/language-
theoretic connections of n-collapsing words have been intensely studied, see [3–
6, 12, 18], and a few new applications have been found, see [1, 2, 19]. In the
present paper we try to summarize these recent developments and also discuss
some new results.
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The very first problem related to n-collapsing words is of course the question
of whether such words exist for every n and over every Σ . We address this
question in Sect. 1 where we survey a few constructions for such words and some
bounds on their length. In Sect. 2 we present and discuss a new result which
allows one to recognize, given a word w ∈ Σ∗ and a positive integer n, whether
or not w is n-collapsing. Finally, in Sect. 3 we briefly explain how n-collapsing
words are used in algebra and exhibit their new application to computational
complexity issues in finite semigroup theory.

1 Constructing Collapsing Words

It is easy to see that a word w over a singleton alphabet is n-collapsing if an only
if |w| ≥ n. (Here and below |w| stands for the length of the word w.) Therefore,
in the sequel we assume that the size t of our alphabet Σ is at least 2. In this
case even the existence of n-collapsing words is not completely obvious, to say
nothing about constructing such words in any explicit way. Indeed, in the above
definition of an n-collapsing word, the alphabet Σ is fixed but one imposes
absolutely no restriction to the number of states of n-compressible automata
under consideration. Clearly, there are infinitely many n-compressible automata
and they all should be ‘served’ by the same word: if w ∈ Σ∗ is 3-collapsing, say,
then w should bring each state of any 3-compressible DFA with 4 states to one
particular state and the same w should send the state set of any 3-compressible
DFA with 1000000 states to a 999997-element subset, etc.

Sauer and Stone [20] who were arguably the first to introduce n-collapsing
words (under the name ‘words with property Δn ’) proved their existence for
each n via the following inductive construction. To start with, observe if a DFA
A = 〈Q,Σ, δ〉 is 1-compressible, then there is a letter a ∈ Σ with dfA (a) ≥ 1.
(Otherwise each transformation δ( , a) would be a permutation and the DFA
A could not be 1-compressible.) Since the deficiency of any word is no less
than the maximum deficiency of its letters, we conclude that any word involving
all letters in Σ = {a1, . . . , at} is 1-collapsing. Having used this observation as
the induction basis, Sauer and Stone let w1 = a1 · · · at and then proceeded by
defining

wn+1 = wn

∏
0≤|v|≤3·2n−2+1

(vwn). (1)

Thus, the right-hand side of (1) is an alternating product of all words from Σ∗

of length at most 3·2n−2+1 (in some fixed order) and the corresponding number
of copies of the word wn . Then, for each n, the word wn is n-collapsing [20,
Theorem 3.3]. Of course, the length of these words grows very fast with n (it is
a doubly exponential function of n).

It turns out that the same idea can yield a series of much shorter n-collapsing
words. Namely, in [12, Theorem 3.5] it is shown that one can restrict the above
alternating product to words of length at most n + 1. More precisely, the result
says that if u1 = w1 = a1 · · · at and
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un+1 = un

∏
0≤|v|≤n+1

(vun) (2)

then, for each n, the word un is n-collapsing (‘witnesses for deficiency n’ in the
terminology of [12]). The proof relies on examining a certain configuration in
combinatorics of finite sets and follows Pin’s approach in [15]. It can be easily

calculated that |un| = O(t
n2−n

2 ); for t ≥ 5, the word un is the shortest n-
collapsing word known so far.

Another existence proof suggested in [12] exploits tight relations between n-
collapsing words and the famous Černý conjecture in automata theory. Recall
that a DFA A is called synchronizable if there exists a reset word whose action
‘resets’ A , i.e. brings all its states to a particular one. The Černý conjecture [9]
claims that each synchronizable automaton with m states possesses a reset word
of length at most (m−1)2 . The conjecture is open in general; the best estimation
of the size of the shortest reset word known so far is due to Pin [16]. It is shown
in [12, Section 2] how Pin’s estimation implies that any word having among its
factors all words over Σ of length 1

6n(n + 1)(n + 2) − 1 is n-collapsing. The

minimum length of such an n-collapsing word is equal to t
n(n+1)(n+2)

6 −1 + 1
6n(n+

1)(n + 2) − 2. It is worth mentioning that this alternative construction also
depends on a rather involved result from combinatorics of finite sets – a theorem
conjectured in [16] and proved by Frankl [10].

We denote by c(n, t) the minimum length of n-collapsing words over t letters.
The construction (2) provides an upper bound for c(n, t). As for a lower bound,
for n > 2 the only known bound follows from an observation made in [12]. We
call a word n-full if it has all words of length n over Σ among its factors.

Proposition 1 ([12, Theorem 4.2]). Any n-collapsing word is n-full.

The shortest n-full word over Σ has the length tn + n − 1 whence c(n, t) ≥
tn + n − 1 for all n and t. For n = 2, a better lowed bound has been recently
found in [18, Theorem 2]: c(2, t) ≥ 2t2 .

At present, only two exact values of the function c(n, t) are known: c(2, 2) =
8 [20] and c(2, 3) = 21 [6, Proposition 3.3]. The words

W8 = aba2b2ab and W21 = aba2c2bab2acbabcacbcb (3)

are two concrete examples of 2-collapsing words of minimum length over 2 and
respectively 3 letters. Observe that these two words can be used to improve the
upper bounds for c(n, 2) and c(n, 3): one gets shorter n-collapsing words over 2
and 3 letters by starting the recursion (2) with n = 2 and with the word W8

or respectively W21 in the role of u2 . This gives, for instance, the estimations
c(3, 2) ≤ 162 and c(3, 3) ≤ 963. It is also known that c(2, 4) ≤ 58 – this follows
from an example of 2-collapsing word of length 58 that has been constructed by
Martjugin (unpublished). Again, using Martjugin’s word in the role of u2 in (2)
one obtains a series of shorter n-collapsing words over 4 letters.

As for lower bounds, we know that c(3, 2) ≥ 33; this follows from [6, Propo-
sition 3.4]. The reader sees that the gaps between upper and lower estimates for
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c(n, t) remain quite large not only in the general case but also for small concrete
values of n and t. Thus, even in a short distance ahead there is plenty that needs
to be done.

2 Recognizing Collapsing Words

Given a word w ∈ Σ∗ and a positive integer n, how to decide whether or not w
is n-collapsing? The answer is easy to find for n = 1: a word is 1-collapsing if and
only if it involves all letters in Σ . In [3], the question has been answered for the
first non-trivial case n = 2. The solution proposed in [3] is based on a reduction of
the initial question to a problem concerning finitely generated subgroups of free
groups which can be efficiently solved by certain classic methods of combinatorial
group theory. A more geometric version of this idea has been developed in [4]. It
results in an algorithm that, given a 2-full word w ∈ Σ∗ , produces a finite bunch
of inverse automata such that w is not 2-collapsing if and only if at least one of
these inverse automata can be completed to a 2-compressible DFA A = 〈Q,Σ, δ〉
with |Q| < |w| and dfA (w) = 1. (If w is not 2-full, it cannot be 2-collapsing by
Proposition 1.) The algorithm involves an exhaustive search through all subsets
of certain sets of factors of the word w, and therefore, fails to be polynomial for
t = |Σ| > 2. Still the algorithm can be implemented efficiently enough in order
to check 2-collapsability of considerably long words, see [6] for a brief survey of
our computer experiments in the area. For instance, the word W21 in (3) is the
first (in the lexicographical order) in the list of all shortest 2-collapsing words
over {a, b, c} computed by a program implementing the algorithm from [4] (up
to renaming of the letters there are 80 such words).

So far we have not succeeded in extending the ideas from [3, 4] to n-collapsing
words with n > 2. Therefore, we have focused our efforts on a more modest goal
of showing that the language Cn of all n-collapsing words over Σ is decidable
in principle, i.e. is a recursive subset of Σ∗ . For this, it suffices to find, for each
positive integer n, a computable function fn : N → N such that a word w ∈ Σ∗ is
n-collapsing provided dfA (w) ≥ n for every n-compressible DFA A = 〈Q,Σ, δ〉
with |Q| < fn(|w|). Indeed, if such a function exists, then, given a word w,
we can calculate that value m = fn(|w|) and then check the above condition
through all automata with at most m − 1 states. Since there are only finitely
many such automata with a fixed input alphabet, the procedure will eventually
stop. If in the course of the procedure we encounter an n-compressible DFA A
with dfA (w) < n, then the word w is not n-collapsing by the definition. If no
such automaton is found, then w is n-collapsing by the choice of the function fn .

From the results of [4] it follows that, for n = 2, a function f2 with the
desired property does exist; in fact, one may set f2(�) = max{4, �}. Recently,
the second-named author has managed to find a suitable function for an arbitrary
n. The result can be stated as follows.

Theorem 1. For every word w ∈ Σ∗ which is not n-collapsing, there exists an
n-compressible DFA A = 〈Q,Σ, δ〉 with |Q| ≤ 3|w|(n − 1) + n + 1 such that
dfA (w) < n.
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As discussed above, this implies that the language Cn is recursive. In fact, we can
say more because Theorem 1 shows that the role of the function fn can be played
by the linear (in |w|) function 3|w|(n − 1) + n + 2. This immediately leads to
a non-deterministic linear space and polynomial time algorithm recognizing the
complement of the language Cn : the algorithm simply makes a guess consisting
of a DFA A = 〈Q,Σ, δ〉 with |Q| ≤ 3|w|(n − 1) + n + 1 and then verifies
that A is n-compressible (this can be easily done in low polynomial time) and
that w is not n-compressing with respect to A . By classical results of formal
language theory (cf. [13, Sections 2.4 and 2.5]), this implies that the language
Cn is context-sensitive.

The proof of Theorem 1 is rather technical and cannot be reproduced here
in full. Instead we outline its main underlying ideas.

Thus, fix a word w ∈ Σ∗ which is not n-collapsing. We may assume that w is
n-full – otherwise w is not n-compressing with respect to a synchronizing DFA
with n+1 states (see the proof of [12, Theorem 4.2]). Now fix an n-compressible
DFA B = 〈B,Σ, β〉 such that dfB(w) < n. Without any loss we may assume
that dfB(w) = n−1. Indeed, if dfB(w) = k < n−1 we can add n−k new states
q1, . . . , qn−k to B and extend the transition function β to these new states by
letting β(qi, a) = q1 for all i = 1, . . . , n − k and all a ∈ Σ . Clearly, we obtain
an n-compressible DFA and the deficiency of the word w with respect to it is
precisely n− 1.

Now assume that some of the states of the DFA B are covered by tokens and
the action of any letter a ∈ Σ redistributes the tokens according the following
rule: a state q ∈ B will be covered by a token after the action of a if and only
if there exists a state q′ ∈ B such that β(q′, a) = q and q′ was covered by a
token before the action. In more ‘visual’ terms, the rule amounts to saying that
tokens slide along the arrows labelled a and, whenever several tokens arrive at
the same state, all but one of them are removed. The following picture illustrates
the rule: its right part shows how tokens distribute over the state set of a DFA
after completing the action of the letter a on the distribution shown on the left.

Fig. 1. Redistributing tokens under the action of a letter

Now suppose that we have covered all states in B by tokens and let a word
v ∈ Σ∗ (that is, the sequence of its letters) act according the above rule. It is



16 Dmitry S. Ananichev, Ilja V. Petrov, and Mikhail V. Volkov

easy to realize that, after completing this action, tokens will cover precisely the
set B . v.

Let � = |w| and, for i = 1, . . . , �, let w[i] ∈ Σ be the letter occupying the
i-th position from the left in the word w. Let wi = w[1] · · ·w[i] be the prefix of
length i of w. We cover all states in B by tokens and let the letters w[1], . . . , w[�]
act in succession. On the i-th step of this procedure we mark all elements of the
following sets of states:

PES(i) =(B \B .wi−1) . w[i];
CES(i) =B \B .wi;
NES(i) =(B \B .wi) . w[i].

The meaning of these three sets can be easily explained in terms of the distri-
bution of tokens before and after the action of the letter w[i]. It is convenient
to call a state empty if it is not currently covered by a token. Then PES(i) is
the set of all ‘post-empty’ states to which the letter w[i] brings states that had
been empty before the action of w[i]. The set CES(i) consists of current empty
states and NES(i) contains all ‘next-to-empty’ states that can be achieved from
CES(i) by an extra action of the letter w[i].

Fig. 2. Marking induced by the transition shown in Fig. 1

For example, assume that the transition shown in Fig. 1 represents the i-th
step of the above procedure (so that w[i] = a). Then all but one states get
marks as shown on Fig. 2. Indeed, PES(i) = {2} because 3 was the only empty
state before the action of a and β(3, a) = 2. Further, CES(i) = {2, 5} and
NES(i) = {1, 3}.

Let C =
⋃

1≤i≤� (PES(i) ∪CES(i) ∪NES(i)) be the set of all states that
get marks during the described process. This set forms a core of the ‘small’
n-compressible DFA A whose existence is claimed in Theorem 1.

Proposition 2. |C| ≤ 3�(n− 1).

Proof. Since dfB(w) = n − 1, at most n − 1 states of B can be empty after
the action of each of the letters w[1], . . . , w[�]. This implies that each of the sets
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PES(i), CES(i), NES(i) contains at most n−1 states whence their union C has
at most 3�(n− 1) states. ��

Now we consider the incomplete automaton C whose state set is C and whose
(partial) transition function γ : C ×Σ → C is the restriction of the function β
in the following sense: for each q ∈ C and each a ∈ Σ

γ(q, a) =

{
β(q, a) if β(q, a) ∈ C,

undefined if β(q, a) /∈ C.

Our next aim is to complete the automaton C to a DFA by appending new
arrows to it.

We call any triple (q, a, q′) ∈ B ×Σ ×B such that β(q, a) = q′ a transition
labelled a. Let C = B\C . A transition (q, a, q′) is said to be ingoing (respectively
outgoing) if q ∈ C and q′ ∈ C (respectively if q ∈ C and q′ ∈ C). We need the
following result.

Proposition 3. For each a ∈ Σ , the number of ingoing transitions labelled a
does not exceed the number of outgoing transitions labelled a.

Proof. Any letter a ∈ Σ occurs in the word w (because w is n-full); let i,
1 ≤ i ≤ �, be such that w[i] = a. By the definition of the set CES(i−1), all states
that become empty after the action of the word wi−1 belong to the set C whence,
before the action of w[i], all states in the set C are covered by tokens. Therefore
the number of tokens brought from C to C by the action of w[i] = a is equal
to the number of ingoing transitions labelled a. Now, arguing by contradiction,
suppose that the number of ingoing transitions labelled a exceeds the number
of outgoing transitions labelled a. Then the number of tokens arriving at C
under the action of w[i] is strictly less than the number of tokens leaving C .
This means that after the action of wi some state q ∈ C becomes empty, that
is, q ∈ B \B .wi = CES(i) ⊆ C . We have found a state that belongs to both C
and C , a contradiction. ��

By Proposition 3, for each letter a ∈ Σ , there exists a one-to-one mapping
ϕa from the set of all of ingoing transitions labelled a to the set of all outgoing
transitions labelled a. We use these mappings to complete the automaton C in
the following way. If for some q ∈ C , the state γ(q, a) is not defined, then q′ =
β(q, a) belongs to C so that (q, a, q′) is an outgoing transition. If this transition
does not lie in the range of ϕa , we define γ′(q, a) = q ; in other words, we append
to C a new loop labelled a at the state q . If (q, a, q′) = ϕa((r, a, r′)) for some
(uniquely determined) ingoing transition (r, a, r′), then we define γ′(q, a) = r′ ;
in other words, we append to C a new arrow from q to r′ labelled a. Now we
define a complete transition function δ : C ×Σ → C by letting

δ(q, a) =

{
γ(q, a) if γ(q, a) is defined,
γ′(q, a) if γ(q, a) is undefined.

We define the DFA 〈C,Σ, δ〉 by D . The main property of the DFA is contained
in the next proposition whose (relatively long) proof is omitted.
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Proposition 4. dfD(w) = n− 1.

However, the automaton D is not yet the DFA from the formulation of
Theorem 1 because in general D may fail to be n-compressible. On the other
hand, the DFA B is n-compressible, that is, there exists a word u ∈ Σ∗ with
dfB(u) ≥ n. Then, of course, dfB(wu) ≥ n as well whence in the set B .w there
are two different states p and r such that β(p, u) = β(r, u). We fix such a pair
(p, r) ∈ B .w×B .w and assume that u is the shortest word whose action brings
p and r to one state q , say. Then we have

Proposition 5. The state q belongs to the set C of marked states.

Proof. Let a be the last letter of the word u. If we decompose u as u = u′a, then,
by the choice of u, the states p′ = β(p, u′) and r′ = β(r, u′) are still different
while β(p′, a) = β(q′, a) = q .

Now recall that the word w is assumed to be n-full and hence w contains the
word an a factor, say, w[i]w[i+1] · · ·w[i+n−1] = an . Since dfB(w) = n−1, we
must have dfB(an) ≥ n−1. This means that the decreasing sequence B ⊇ B . a ⊇
B . a2 ⊇ . . . stabilizes after at most n−1 steps whence a acts on the set B . an−1

as a permutation. If q /∈ B . an−1 , then q ∈ B \B .wi−1a
n−1 = CES(i+n−2) ⊆

C . If q ∈ B . an−1 , then at least one of the states p′ and r′ lies outside B . an−1

(because a acts on this set as a permutation and β(p′, a) = β(q′, a) = q).
Therefore, q ∈ PES(i + n− 1) ⊆ C . ��

Let |u| = k and, for 0 ≤ j < k, let uj be the prefix of u of length j . The
rest of the proof splits into several cases depending on the position of the states
pj = β(p, uj) and rj = β(r, uj) with respect to the sets C and B .w. Clearly, if
all the states pj , rj (j = 0, . . . , k−1) belong to the set C , then already the DFA
D is n-compressible. We may also assume that for no j > 0 the pair (pj , rj)
belongs to B .w×B .w because otherwise we could have used (pj , rj) instead of
(p, r). Using this observations and also the facts that |B\B .w| = dfB(w) = n−1
and B \ B .w = CES(�) ⊆ C , we can enlarge D by adding at most n + 1 new
states to an n-compressible DFA A retaining the property that the word w is
not n-compressing with respect to A . Again, we omit technicalities which are
interesting but rather cumbersome.

In conclusion, we formulate two open questions related to Theorem 1.
1. As discussed above, the theorem implies the existence of a non-deterministic

polynomial time algorithm to recognize that a given word is not n-collapsing.
In other words, this means that the problem of recognizing n-collapsing words
belongs to the complexity class co-NP. Therefore a natural question to ask is the
following: is the problem of recognizing n-collapsing words co-NP-complete?

2. We have deduced from Theorem 1 that the language Cn of all n-collapsing
words is context-sensitive. We expect that Cn is not context-free for n > 1. So
far this conjecture has been proved only for the language C2 over two letters [18,
Theorem 1]. Is it true in general?
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3 Applications of Collapsing Words

Let S be a finite semigroup, Σ a finite alphabet and ϕ : Σ → S an arbitrary
mapping. Then the DFA Cϕ(S) = 〈S,Σ, δ〉 where δ(s, a) = sϕ(a) for all s ∈ S
and a ∈ Σ is called the right Cayley graph of S with respect to ϕ. The following
fact (first observed in [17] for the Sauer–Stone words (1)) underlies all algebraic
applications of collapsing words:

Proposition 6. Let S be a semigroup with n elements, ϕ : Σ → S an arbitrary
mapping and w an (n−1)-collapsing word over Σ . Then, for every u ∈ Σ∗ , the
word uw acts on the set S .w in the right Cayley graph Cϕ(S) as a permutation.

Proof. Clearly (S .w) . uw ⊆ S .w. In order to show that the two sets coincide,
denote the cardinality of the set (S .w) . uw = S .wuw by k. Then the deficiency
of the word wuw with respect to Cϕ(S) is equal to n−k whence the DFA Cϕ(S)
is (n−k)-compressible. It is easy to see that each (n−1)-collapsing word is also
(n− k)-collapsing word for all k = 1, . . . , n. Therefore the deficiency of w with
respect to Cϕ(S) is at least n − k whence |S .w| ≤ k. Thus, the action of uw
just permutes the elements of S .w. ��

Using some basic facts from the theory of finite semigroups, one can easily
obtain that, under the condition of Proposition 6, ϕ(wΣ∗w) is a subgroup of
the semigroup S . Observe that the universal nature of collapsing words reflects
in the fact that the latter claim does not depend on any structural property
of S (only the cardinality of S is important). This makes collapsing words be
a powerful device in reducing certain questions of finite semigroup theory to
similar questions concerning groups. Various concrete examples of such usage
of collapsing words can be found in [1, 17]; here we present a new application
dealing with computational complexity issues.

Let S be a semigroup, Σ an finite alphabet and u, v ∈ Σ+ . We say that
S satisfies the identity u = v if ϕ(u) = ϕ(v) for every mapping ϕ : Σ → S .
The identity checking problem for a finite semigroup S , ID-CHECK(S), is a
combinatorial decision problem with:

INSTANCE: A semigroup identity u = v.
QUESTION: Does S satisfy the identity u = v?

Observe that the size of an instance u = v of ID-CHECK(S) is just |u| + |v|;
the semigroup S is not a part of the input, and therefore, |S| (and any function
of |S|) should be treated as a constant.

Recently, the idea of classifying finite semigroups with respect to the com-
putational complexity of their identity checking problem has attracted a consid-
erable attention. (Indeed, the problem is quite natural by itself and also is of
interest from the computer science point of view – we refer to [7, Section 1] for
a brief discussion of its relationships to formal specification theory.) So far the
most complete answers have been found for the group case: it has been shown
that ID-CHECK(G) is coNP-complete for each non-solvable group G [11] but is
decidable in polynomial time whenever G is nilpotent or dihedral [8].
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The next result reduces the identity checking problem for a certain group to
the identity checking problem for a given finite semigroup S .

Theorem 2. Let S a semigroup with n elements and G the direct product of
all its maximal subgroups. Further, let Σ be a finite alphabet, w an (n − 1)-
collapsing word over Σ , and π(a) = wn!awn! for each letter a ∈ Σ . Then, for
all u, v ∈ Σ+ , G satisfies the identity u = v if and only if S satisfies the identity
π(u) = π(v).

As discussed in Section 1, for each finite alphabet Σ , there exists an (n − 1)-
collapsing word w over Σ whose length is a polynomial of |Σ|. If one takes such
a word w for constructing the mapping π in Theorem 2, then |π(u)|+ |π(v)| is
bounded by a polynomial of |u|+ |v|, and Theorem 2 provides a polynomial time
reduction of ID-CHECK(G) to ID-CHECK(S). As an immediate consequence
of this reduction and [11], we obtain that the problem ID-CHECK(S) is coNP-
complete whenever S contains a non-solvable subgroup.
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Abstract. Locally consistent parsing (LCP) is a context sensitive par-
titioning method which achieves partition consistency in (almost) linear
time. When iteratively applied, LCP followed by consistent block labeling
provides a powerful tool for processing strings for a multitude of prob-
lems. In this paper we summarize applications of LCP in approximating
well known distance measures between pairs of strings in (almost) linear
time.

1 Introduction

Locally consistent parsing (LCP) is a method to partition a string S from an
alphabet σ to short substrings in a “consistent” fashion. Consistency is achieved
in the following manner: identical substrings are partitioned identically with
the possible exception of their margins. We give a more precise definition of
consistency later in the paper.

LCP has been introduced more than 10 years ago. Since then, it has been
applied to a multitude of problems involving strings such as data structures
problems, pattern matching applications, data compression, and string embed-
dings. Below, we give a brief history of the development of LCP and some of its
key applications.

LCP is based on the Deterministic Coin Tossing (DCT) procedure of Cole
and Vishkin [5], which was introduced to deterministically partition a ring of
n processors, each with a unique ID, to blocks of size 2 or 3 in a distributed
fashion. The procedure was iteratively applied to the representative processors
(say, the leftmost one) in each block to obtain a hierarchical partitioning. This
was in turn used to perform list ranking of the processors in O(log n) rounds
and a total of O(n) operations.

Two surprising applications of the DCT appeared (almost simultaneously) in
1994, which generalized DCT to strings with character repetitions [13, 15, 16].
LCP is this generalization of DCT to string partitioning. In [13], an efficient data
structure for maintaining a dynamic collection of strings that allow equality tests,
concatenation and split operations is described. In [15, 16], a novel algorithm for
building the suffix tree of a given string in polylogarithmic parallel time while
performing a total of O(n) operations is given. Both applications are based
iterative application of LCP followed by a consistent labeling of these blocks or
their extensions.
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c© Springer-Verlag Berlin Heidelberg 2005



LCP and Applications to Approximate String Comparisons 23

Later in [17], a single-pass data compression algorithm based on LCP is intro-
duced. The number of codewords output by this algorithm is at least as many as
that output by the ever popular Lempel-Ziv’77 algorithm and at most O(log n)
factor higher. However, the size of the dictionary and, thus, the size of each code-
word can be substantially smaller for low entropy texts, potentially resulting in
a better compression. A recent paper [7] presents (among other results) an ex-
tension of this algorithm that achieves the following: after preprocessing a given
string in time O(n log2 n) compute the Lempel-Ziv’77 compressibility of any of
its substrings in O(1) time within an approximation factor of O(log n log∗ n).

In [18], LCP is applied to pattern matching under edit distance; here, the goal
is to find all substrings of a given text string T whose edit distance to a pattern
string P is no more than k. The algorithm presented here is the first one achieving
o(|P | · |T |) time for small values of k. This result was later improved in [4] by
the use of other techniques. Also in [18], an efficient data structure for dynamic
text indexing based on LCP is described. Here the goal is to maintain a dynamic
string, subject to single character insertions, deletions and replacements, so that
substring membership queries can be answered efficiently. An improvement of
this data structure, which is again based on LCP, was later described in [1].
Finally, [18] shows how to maintain a dictionary data structure under insertion
and deletion of dictionary entries so that given a text string, all occurrences of
each dictionary entry can be efficiently computed.

In this paper we review applications of LCP to approximately computing sev-
eral variants of the edit distance between a pair of strings in almost linear time.
The standard (character) edit distance between two strings can be computed ex-
actly in quadratic time for general alphabets and slightly under quadratic time
for a constant-size alphabet [11]. On the other hand, the block edit distance and
edit distance with (block) moves are known to be NP-hard to compute. The
task of efficiently computing these edit distance variants, even approximately, is
of significance, especially in computational biology, where the data is very large
and thus fast algorithms are highly desired. LCP has been successfully used to
achieve this task for all three measures of string similarity.

One fast method for quickly approximating certain variants of edit distance
is based on embedding strings to metric spaces with simpler-to-compute distance
measures. The first such embedding is described in [14] for strings under block
edit distance (the minimum number of character edits and block moves, copies
and “uncopies” to transform one string into the other) into the Hamming space.
The embedding, which results in a distortion of O(log n(log∗ n)2), is computed
in almost linear time, implying a fast approximation algorithm for the block edit
distance. A followup result [6] gives a similar embedding of strings under edit
distance with (block) moves into L1 space with distortion O(log n(log∗ n)2).

All the results described so far are obtained by a specific version of LCP
which partitions an input string into blocks of size 2 or 3. A generalization of
LCP so that the input strings are partitioned into blocks of size at least c and
at most 2c− 1 for any user defined c is recently described in [3]. This particular
version of LCP is applied to obtain a dimensionality reduction technique on
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strings. More specifically [3] shows how to embed any string S of length n into
a string of length at most n/r for any value of the contraction parameter r. The
embedding preserves the edit distance between two strings within a factor of
Õ(r1+μ) for some small μ. This embedding together with some annotations are
later used to compute the edit distance D(S,R) between two strings S and R

within an approximation factor of min{n 1
3+o(1),D(S,R)

1
2+o(1)} in almost linear

time.

Overview of the paper. We start in Section 2, by giving some definitions and
notation. In Section 3, we describe the (generalized) Locally Consistent Parsing
method for any value of (minimum block length) c. We summarize applications
of LCP to approximately computing edit distances in Section 4.1.

2 Preliminaries

Let S, R be two strings over some alphabet σ. We use S[i] to denote the ith

character of the string S and S[i, j] to denote the substring of S between po-
sitions i and j (inclusive). |S| denotes the length of S and Sr[i, j] denotes the
reverse of S[i, j]. For two strings S and R, S ◦R denotes the string obtained by
concatenating S and R. We denote by D(S,R) the edit distance between S and
R, i.e., the minimum number of character insertions, deletions, and substitutions
needed to obtain R from S.

An alignment between S and R associates each character of S (and R) with
at most one character from R (correspondingly S) such that given i < j, if S[i]
is aligned with R[i′] and S[j] with R[j′] then i′ < j′. An optimal alignment
between S and R minimizes the sum of the number of unaligned characters
and misalignments (alignments between non-identical characters) in S (and R).
The sum of the number of unaligned characters in S and R and misalignments
between S and R in an optimal alignment is equal to D(S,R).

Another measure of similarity between the strings S and R is the block edit
distance, denoted BED(S,R), which is defined to be the minimum number of
character edits and block edits to transform one string into the other. Character
edits are insertion, deletion and replacement of a single character. Block (sub-
string) edits are relocating an entire substring, copying a substring from one
location to another and “uncopying” a block; i.e. deleting one of the two copies
of a substring1.

One final measure of similarity between strings S and R is edit distance with
moves, denoted by MV(S,R). Here, all single character edit operations as well
as substring relocation operation is allowed.

Metric embeddings. Many of the applications of LCP to “approximately” com-
pare strings are based on embedding strings under various edit distances to other
1 Other versions of block edit distance that allow substring reversals and linear trans-

formations on substrings have also been described. Here we only focus on the
“vanilla” block edit distance
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metric spaces. Given two metric spaces M1 = (X1, D1) and M2 = (X2, D2),
where Xi is the universe and Di is the distance measure for metric Mi, φ :
X1 → X2 is an embedding with distortion d = d1 · d2 for d1, d2 ≥ 0, if, for any
y, z ∈ X1,

D1(y, z)/d1 ≤ D2(φ(y), φ(z)) ≤ d2 ·D1(y, z).

3 A Generalized Description
of Locally Consistent Parsing

Locally Consistent Parsing is a consistent way of partitioning any string S into
(non-overlapping) blocks such that the minimum block length is c and the max-
imum block length is 2c − 1. For full generality, the maximum block length
cannot be less than 2c− 1; for instance, if |S| = 2c− 1, then S cannot be parti-
tioned into blocks with length in the range [c, 2c− 2]. The blocks obtained will
be consistent in the following sense: if two identical substrings S[i, i + b] and
S[j, j + b] appear in long enough identical “contexts” S[i − γ(c), i + b + γ′(c)]
and S[j − γ(c), j + b + γ′(c)] for increasing functions γ(c), γ′(c), and if S[i, i+ b]
is identified as a block then S[j, j + b] must be identified as a block. Note that
c ≤ b + 1 ≤ 2c− 1.

Observe that a single edit operation on S will only have a local effect on such
a partitioning of S. A single edit can change (1) the block in which it lies, and
(2) the blocks whose neighborhoods, as defined by γ() and γ′(), contain the edit
operation. Hence the number of blocks that can change as a result of a single
edit operation is O((γ(c) + γ′(c))/c).

LCP was originally described for c = 2. This basic case, which we denote
by LCP(2), relies on the Deterministic Coin Tossing technique [5]; it is quite
simple but is sufficiently powerful to achieve the desired performance in many
applications, some of which are described here. The more general LCP(c)was
introduced in [3] to solve a number of problems where the choice of c turns out to
be of crucial importance. Here we describe the general version while illustrating
the main ideas through examples based on LCP(2).

3.1 Description of LCP(c) for Small Alphabets

Given input string S, LCP(c) treats repetitive and nonrepetitive substrings of
S differently. Repetitive substrings are partitioned in a straightforward way; for
partitioning non-repetitive substrings, a generalized version of the Deterministic
Coin Tossing technique is used to guarantee block sizes of c to 2c− 1.

Here we describe LCP(c) for small alphabets; in Section 3.2, we show how to
generalize it to integer alphabets. We start off by describing how to identify the
repetitive substrings of the input string.

Definition 1. A string R is called r-repetitive if it is of the form Q� where
� ≥ 2 and Q, the repetition, is a string of length r. Given a string S, a substring
R of S is called maximally r-repetitive if (1) it is r-repetitive with repetition T ,



26 Tuğkan Batu and S. Cenk Sahinalp

where T is the substring that is the lexicographically greatest substring among all
length-r substrings of R, and (2) the length-r substring following or preceding R
(in S) is not T .

For example, for T = ababa, as well as T ′ = babab, the only substring that is
maximally 2-repetitive is baba. This information is helpful since it implies that
T and T ′ have a long common substring. Note that every maximally repetitive
string is periodic but not all periodic strings are maximally repetitive, e.g., abab
and ababa are both periodic with period 2 but are not maximally repetitive since
ab, a substring of both, is lexicographically smaller than ba.

LCP(c) performs the partitioning of S in two phases. Phase 1 partitions S
into substrings that are maximally �-repetitive for � < c and maximally non-
repetitive as follows. For r = c − 1, . . . , 1, LCP(c) extracts all maximally r-
repetitive substrings of S of length at least c that so far remain unextracted.
All the remaining substrings (of maximal length) are identified as maximally
non-repetitive substrings.

For example, if S = aabaaaababa and c = 2, then LCP(c) will first identify
S[1, 2] = aa and S[4, 7] = aaaa as maximally 1-repetitive substrings.

Phase 2 further partitions the substrings extracted in Phase 1 to obtain
blocks of length c to 2c− 1.

For partitioning repetitive substrings, each maximally r-repetitive substring
is partitioned into blocks of length t where t is the smallest multiple of r greater
than c. If the substring length is not divisible by t, the two leftmost blocks can
be arranged so that the leftmost one is of size c. (This choice is arbitrary.)

For partitioning maximally non-repetitive substrings, first, any non-repetitive
substring Q of length less than c is merged with the (necessarily repetitive)
block to its left. If Q is a prefix of S, it is merged with the (again necessarily
repetitive) block to its right. If the resulting block is of length greater than 2c,
it is partitioned (arbitrarily) into two blocks such that the left one is of length c.

In the above example, S[1, 2] = aa will be identified as a single block of size 2
and S[4, 7] = aaaa will be partitioned into two blocks S[4, 5] and S[6, 7]. The
non-repetitive block S[3, 3] = b is then merged to the block to its right to form
the block S[3, 5] = baa.

For non-repetitive substrings of length at least c LCP(c) performs a more
sophisticated partitioning scheme that ensures partition consistency as stated
earlier. To achieve this, whether a character is selected to be a block boundary
depends on the character’s immediate neighborhood. The operations defined
below facilitate the comparison of a character to other characters in its neigh-
borhood.

Definition 2. Given two distinct binary words w and y of length k each, let
fy(w) be a binary word of length k′ = �log k�+ 1, defined as the concatenation
of (i) the position of the rightmost bit b of w where w differs from y, represented
as a binary number (counted starting from 1 at the right end), and (ii) the value
of w at bit b. We define fw(w) = 0k′

.
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For example, f1111(1101) = 0100 as the position of the rightmost bit of 1101
that differs from 1111 is 2 (010 in binary) and its value is 0.

Definition 3. For a character S[i] and positive integers c and �, we define

gc,�(S[i]) def= fS[i−c−�+2,i+c−�−2](S[i− c + 2, i + c− 2]).

If S[i] is represented by a k-bit word, then gc,�(S[i]) is a k′-bit word where k′ =
�log((2c− 3)k)�+ 2.

Intuitively, gc,�(S[i]) relates the substring of size 2c − 3 around S[i] to that
of size 2c− 3 around S[i + �].

Given a maximally non-repetitive substring Q, LCP(c) generates an auxiliary
substring Q′ to help identify some of the block boundaries. Let �log2 |σ|� = k,
where σ is the alphabet. For each Q[i] (represented as a k-bit word), let

Q′[i] def= gc,c−1(Q[i]) ◦ gc,c−2(Q[i]) ◦ . . . ◦ gc,1(Q[i]).

The characters of Q′ are represented as words of length k′ = (c− 1) · (�log((2c−
3)k)� + 2) = O(c log(ck)) bits. Thus the construction of Q′ from Q constitutes
an alphabet reduction as long as k′ < k. Since Q′ will only be used to determine
block boundaries, the information loss resulting from this alphabet reduction is
not problematic.

Lemma 1. Let Q be a non-repetitive substring and let Q′[3c− 5, |Q| − c + 2] be
the string obtained from Q[3c− 5, |Q| − c + 2] after the alphabet reduction. Then
Q′[3c− 5, |Q| − c + 2] is non-repetitive.

Proof. Observe that given binary words x, y, z, such that x �= y and y �= z, if the
position of the rightmost bit b of x that differs from y is identical to the position
of the rightmost bit b′ of y that differs from z, then the bit values of b and b′

must be different; i.e., fx(y) �= fy(z).
Fix i ∈ [4c− 6, |Q| − c + 2] and � ∈ [1, c− 1]. Consider

gc,�(Q[i]) = fQ[i−c−�+2,i+c−�−2](Q[i− c + 2, i + c− 2])

and

gc,�(Q[i− �]) = fQ[i−c−2�+2,i+c−2�−2](Q[i− c− � + 2, i + c− �− 2]).

Now, let x = Q[i− c− 2� + 2, i + c− 2�− 2], y = Q[i− c− � + 2, i + c− �− 2],
and z = Q[i− c + 2, i + c− 2].

Note that x �= y; otherwise Q[i − c − 2� + 2, i + c − � − 2] includes an
�-repetitive substring of length more than c (which is impossible for a non-
repetitive substring extracted by the algorithm). Similarly, y �= z. Using the
opening observation of the proof, we have gc,�(Q[i − �]) = fx(y) �= fy(z) =
gc,�(Q[i]). Hence, Q′[i− �] �= Q′[i]. ��
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Now we are ready to identify the block boundaries on the nonrepetitive sub-
string Q, using information from Q′. A character Q[i] is set to be a primary
marker if Q′[i] is lexicographically greater than each character in its immediate
neighborhood of length 2c−1, namely, in Q′[i−c+1, i+c−1]. Note that primary
markers are set in Q; Q′ is solely used in helping determine their locations.

Lemma 2. Let Q[i] and Q[j] be two consecutive primary markers in Q such
that i < j. Then, c ≤ j − i ≤ 4(2k′

) = O((kc)c).

Proof. We first give the proof for the lower bound. Assume for contradiction
that both Q[i] and Q[i + �] are primary markers for � < c. Let Q′ be the string
obtained from Q by the alphabet reduction. Then, by definition of a primary
marker, Q′[i] must be lexicographically greater than Q′[i+ �] and Q′[i+ �] must
be lexicographically greater than Q′[i], a contradiction. Thus, both Q[i] and
Q[i + �] cannot be primary markers for � < c.

We now give the proof for the upper bound. It is by induction on the size t
of the alphabet for Q′. The bound holds for t = 3. By Lemma 1, we know that
Q′[i] �∈ {Q′[i−c+1], Q′[i−1], Q′[i+1], Q′[i+c−1]}. Also, recall that the characters
of Q′ are represented by binary strings of length k′ (i.e., t = 2k′

). Without
loss of generality, assume that both Q′[i] and Q′[j] are the lexicographically
maximal alphabet character in σ′ (this is the worst case). Then, since there
are no primary markers between i and j, no character in Q′[i + 1, j − 1] is
the lexicographically maximal character. Moreover, in Q′[i, j], the character just
below the lexicographically maximal character can only be in positions i+1, i+
2, j− 2, j− 1; otherwise, another primary marker would have been set. Without
loss of generality, assume Q′[i+2] and Q′[j−2] are at most this lexicographically
second largest character. Then, by the induction hypothesis, j − 2 − (i + 2) ≤
4(t− 1). Thus, we get j − i ≤ 4t. ��

Having established the primary markers, LCP(c) now partitions Q into blocks
as follows. Q is partitioned into the substrings that are between two consecutive
primary markers (inclusive of the left primary marker), the one to the left of
the leftmost primary marker, and the one to the right of the rightmost primary
marker. Each of these substrings is further partitioned into blocks of length c;
if the substring length is not divisible by c, the leftmost block will be of length
between c + 1 and 2c− 1. The next claim then follows.

Claim. If S[i, j] is a block obtained by LCP(c) then c ≤ j − i + 1 ≤ 2c− 1.

The consistency of the above partitioning is established in the following man-
ner. If S[i, j] and S[i′, j′] are two identical non-repetitive substrings of S of suf-
ficient length, then the blocks within S[i, j] and S[i′, j′], except at the left and
right ends, are identical, regardless of the locations of S[i, j] and S[i′, j′] in S.

Lemma 3. Suppose that for some b ∈ [c− 1, 2c− 2], S[i− 2k′+2− 4c+7, i+ b+
4c− 3] = S[i′ − 2k′+2 − 4c + 7, i′ + b + 4c− 3], and furthermore, both substrings
are parts of substrings identified as being maximally nonrepetitive in S. Then, if
S[i, i + b] is set as a block by LCP(c), then so is S[i′, i′ + b].
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Proof. By definition of primary markers and LCP(c), whether a character S[�]
(within a non-repetitive substring) is set as a marker depends only on S[� −
4c + 7, � + 2c − 3]. Since the decision to set S[i, i + b] as a block depends only
on the primary marker immediately to the left of S[i] and whether there is a
primary maker before S[i+2c], we can conclude that this decision depends only
on S[i− 2k′+2 − 4c + 7, i + b + 4c− 3] by Lemma 2. As a result, S[i, i + b] is set
as a block only if S[i′, i′ + b] is set as a block as well. ��

In the preceding discussion, we described how to partition a nonrepetitive
string Q, where Q is over alphabet σ such that �log |σ|� = k, into blocks of
size between c and 2c − 1 while maintaining a consistency property formalized
in Lemma 3. This lemma guarantees that identical substrings are partitioned
identically except in the margins. This implies thus that a single edit operation
cannot change the partitioning of a string by “too much.” More specifically, the
number of blocks that can change as a result of an edit operation is O((ck)c) in
a non-repetitive substring (by Lemma 3) and is only a constant in a repetitive
substring.

3.2 Iterative Reduction of the Alphabet Size

If c · k = O(1), by the above discussion, each edit operation results in only
O(1) changes in the partitioning of the input string and thus one application of
the alphabet reduction suffices to obtain the desired partition. For ck = ω(1),
there is a need to reduce the alphabet size further before setting the primary
markers in order to guarantee that an edit operation will have limited effect on
the partitioning. In this case, LCP(c) performs the alphabet reduction on each
non-repetitive substring S[i, j] of S, for log∗ kc + O(1) iterations before setting
the primary markers. Let S∗[i, j] be the output of this process. Due to Lemma 1,
since S∗[i, j] is non-repetitive, so is S∗[i, j]. In the first iteration the alphabet
size will be reduced to O((ck)c); in the second it will be O((c2 log ck)c) and
so on. After log∗ kc + O(1) iterations, the alphabet size will be O((3c2 log c)c),
which is independent of k. The primary markers of S[i, j] are then chosen as the
local maxima in S∗[i, j]; this will assure that the maximum distance between
two primary markers will be O((3c2 log c)c) as well. (Recall that the alphabet
reduction is only for the purpose of obtaining primary markers. Afterwards, the
partitioning is performed on the original string.)

Theorem 1. A sequence of h single character edit operations to a string S can
change at most O(h · [(3c2 log c)c/c + log∗ kc]) and at least h/(2c− 1) blocks in
the sequence of blocks obtained by LCP(c).

Proof. The lower bound follows from the fact that the maximum block size is
2c− 1 and thus the minimum possible number of blocks that can contain all h
edit operations is h/(2c− 1).

The upper bound follows from repeated application of the next lemma.

Claim. An edit operation on S can change only O((3c2 log c)c/c+log∗ kc) blocks
obtained by LCP(c).



30 Tuğkan Batu and S. Cenk Sahinalp

Proof. LCP(c) initially partitions S into non-repetitive and r-repetitive sub-
strings for 1 ≤ r < c.

Suppose the edit operation is performed on a non-repetitive substring, which
remains non-repetitive after the operation. The first alphabet reduction on any
S[i] depends only on S[i − 3c + 6, i + c − 2]. In general, the jth application of
the alphabet reduction on S[i] depends on the substring S[i − (3c − 6)j, i +
(c − 2)j]. Thus, for j = log∗ kc + O(1), the output of the jth alphabet reduc-
tion on S[i] will be of size O((3c2 log c)c) and depend only on a substring of
size 4c(log∗ kc + O(1)) that contains S[i]. This further implies that the deci-
sion of whether to choose S[i] as a primary marker also depends only on a
size 4c(log∗ kc + O(1)) + O((3c2 log c)c) substring that contains S[i]. All blocks
within this substring can change as a result of an edit operation on S[i], im-
plying a change of 4(log∗ kc + O(1)) + O((3c2 log c)c/c) blocks. As the distance
between the first changed primary marker and its preceding primary marker is
O((3c2 log c)c), a further O((3c2 log c)c/c) blocks can change as a result.

If the edit operation is performed on a non-repetitive substring that be-
comes repetitive then the same argument applies: The new repetitive substring
splits the non-repetitive substring into two. This can change 4(log∗ kc+O(1))+
O((3c2 log c)c/c) blocks on the two sides of the new repetitive substring.

If the edit operation is performed on a repetitive substring then the exact
locations of the blocks may change; however only O(1) of these blocks will change
content. That is, one has to edit only O(1) blocks in the original string in order
to obtain the partitioning of the modified string. ��

This completes the proof of Theorem 1. ��

Lemma 4. LCP(c) runs in time O(n[c log c + (k + c) log∗ kc]).

Proof. Clearly the partitioning of a repetitive substring into blocks can be done
in linear time in the size of the substring. We now show that the partitioning of
all non-repetitive substrings of S takes O(n[c log c + (k + c) log∗ kc]) time.

We first focus on the time for the first application of the alphabet reduction
on a given S[i] to obtain S′[i]. Consider the compact trie TS that comprises the
bitwise representations of Sr[j − c + 2, j + c− 2] for all j. TS can be obtained in
O(nk) time using any linear-time suffix-tree construction algorithm (e.g., [12]).
After preprocessing TS in O(n) time, the lowest common ancestor (LCA) of two
leaves representing Sr[i − c + 2, i + c − 2] and Sr[i′ − c + 2, i′ + c − 2] for any
i − c + 1 ≤ i′ < i can be found in O(1) time (c.f., [8, 19]). The LCA of these
leaves gives gc,i−i′(S[i]). To obtain S′[i] one only needs to compute gc,i−i′(S[i])
for all i′ such that i − c + 1 ≤ i′ < i; this can be done in time O(c). Thus the
overall running time for performing the alphabet reduction for all characters of
S is O(nk + nc).

Subsequent O(log∗ kc) applications of the alphabet reduction work on smaller
size alphabets; thus the overall running time is O(n(k + c) log∗ kc).

After the alphabet reduction, determining whether each S[i] is a primary
marker can be done as follows. The number of bits needed to represent S∗[i]
is O(c log c); because c ≤ n, this requires O(c) machine words. One can use a
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priority queue that includes each one of the O(c) characters in the substring
S∗[i− c + 2, i + c− 2] to determine whether S∗[i] is the local maxima. This can
be done, for all i, in time O(nc log c).

Once the primary markers are obtained, the final partitioning can be obtained
in O(n) time. ��

4 Applications of LCP
to Approximate String Comparisons

Among the applications of LCP our focus will be embeddings of strings under
character and block edit distances to other metric spaces such as the Hamming
Space or L1, as well as to “shorter” strings (such an embedding is called a di-
mensionality reduction). These embeddings (sometimes together with additional
information) give fast algorithms to approximately compute the edit distance
variants of interest. Here we give a brief description of the techniques underlying
each application as well as theorem statements without proofs.

4.1 Dimensionality Reduction in Strings Under Edit Distance

An embedding φ from M1 = (X1, D1) to M2 = (X2, D2), is a dimensionality
reduction if D1 = D2 and each element in X1 is mapped to an element with
shorter representation in X2. A string embedding with contraction r > 1 is an
embedding from strings of length at most n over an alphabet σ1 under edit
distance, to strings of length at most n/r over another alphabet σ2, again under
edit distance, which contracts the length of the string to be embedded by a factor
of at least r. Thus, such an embedding is a dimensionality reduction. A proof
for the following basic lemma can be found in [3].

Lemma 5. A string embedding with contraction r > 1 cannot have a distortion
d less than r.

Here we present a dimensionality reduction technique for strings which fol-
lows from an iterative application of LCP(c) followed by consistent labeling of
blocks [3]2. The number of iterations, �, is determined by the contraction pa-
rameter r as follows.

Given input strings S and R and |σ| = 2k, denote by S1 and R1 the strings
that are obtained after a single application of LCP(c), respectively. Now, denote
by S� the string obtained by applying LCP(c) on S�−1 followed by consistent
block labeling. Each label in S� corresponds to a substring of S with size in the
range [c�, (2c− 1)�].

Theorem 1 implies the following lemma.

2 The label of a block could either be set to the block’s contents, implying a large
alphabet, or be computed via a hash function, introducing a small probability of
error
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Lemma 6. A single edit operation on S results in O((3c2 log c)c/c + log∗ kc)
labels to change in S�. Thus,

D(S,R)/(2c− 1)� ≤ D(S�, R�) ≤ D(S,R) ·O((3c2 log c)c/c + log∗ kc).

Now let c = O((log logn)/ log log logn); then, φ(S) = S	logc r
 provides a
string embedding with distortion (roughly) r, which is almost optimal.

Theorem 2. Given string S and r > 1, the embedding φ(S) = S	logc r
 has con-
traction r and distortion Õ(r1+μ), where μ = Ω(2/ log log logn). The embedding
can be computed in time Õ(21/μ · n).

4.2 Embedding Strings into L1 and Hamming Space

In this section we describe two very similar results: (i) embedding strings under
block edit distance to the Hamming space [14] and (ii) embedding strings under
edit distance with moves to L1 [6].

The embedding of a string S of length n under block edit distance to a
Hamming vector is based on iterative application of LCP(2). The consistent
labeling following LCP(2), however, is not performed on blocks obtained by
LCP(2). Rather, it is applied to “extended blocks” that are called core blocks,
which are defined as follows. For each block divider between S[i − 1] and S[i],
there is a corresponding core block, which is, for some b = O(log∗ n), the string
S[i− b, i + b] 3. Accordingly, let S′

1 be the sequence of labels of the core blocks
implied by LCP(2) applied on S. One can define, for � > 1, the string S′

� as the
sequence of labels of the core blocks implied by LCP(2) applied on S′

�−1. Notice
that each core block at level � corresponds to a substring of S; this substring
is called a core substring of S. Appropriate choice of b ensures the following
property of the core substrings [14].

Lemma 7. If Q is a non-repetitive core substring of S and Q′ is another sub-
string of S identical to Q, then Q′ must be a core substring of S as well.

We now describe the embedding of S into a binary vector; without loss of
generality, we assume that σ = {0, 1}.

Definition 4. Given string S, its level-i binary histogram, denoted Ti(S), is
the binary vector of size ci where c = O(log∗ n); the jth entry of Ti(S), denoted
Ti(S)[j], is 1 if the binary representation of j is a core substring of S whose
corresponding core block is in S′

i. If j is not a core of S then Ti(S)[j] = 0. The
embedding φ′(S) is then the concatenation of all Ti(S) for i = 0, . . . , logn.

The embedding φ′(S) is an O(2|S|) dimensional binary vector whose jth entry
is set to 1 if the corresponding core is present in S. Although the number of
dimensions in φ′(S) is very large, it is possible to represent it in O(n) space by
3 The LCP(2) description in [14] is a slightly different from the one provided here for

the purpose of tolerating substring reversal as a block edit operation
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simply listing the O(n) core strings of S by the use of pointers. This alternative
representation can be computed in time O(n · log∗ n).

The following lemma is implied by the proof of Theorem 1.

Lemma 8. Let C(S) denote the set of core blocks obtained by LCP(2) on a
string S. A sequence of h single character edits, block copy, block move and block
uncopy operations to S can add or remove most O(h log∗ n) and at least Ω(h)
core blocks from C(S).

As a result, given two strings S and R s.t. |S|, |R| ≤ n, their embeddings
φ′(S) and φ′(R) satisfy the following.

Theorem 3. Ω(BED(S,R))/ log∗(n) = h(φ′(S), φ′(R)) = O(BED(S,R) logn
log∗ n); here h(, ) denotes the Hamming distance.

The embedding of strings under block edit distance to Hamming vectors, to-
gether with efficient data structures for (1+ε)-factor approximate nearest neigh-
bor search in the Hamming space [9, 10], can be used to obtain an O(log n log∗ n)
factor approximate nearest neighbor search data structure for strings under
block edit distance. The preprocessing time and space for the data structure is
O((nm)O(1)) where m is the number of strings in the data structure; the query
time is O(n ·polylog(nm)). This is the first and yet the only known approximate
nearest neighbor search data structure for strings under non-trivial edit oper-
ations that achieves almost optimal preprocessing time, space and query time,
while guaranteeing an approximation factor polylogarithmic in the query size.

A very similar embedding φ′′(S) from strings under edit distance with moves
to L1 space is described in [6]. Without loss of generality, we describe this em-
bedding for σ = {0, 1}.

Definition 5. Given string S, its level-i histogram, denoted Hi(S), is the in-
teger vector of size ci (c = O(log∗ n)) where the jth entry of Hi(S), denoted
Hi(S)[j], is the number of occurrences of the binary representation of j as a
core substring in S, whose corresponding core block is in S′′

i . The embedding
φ′′(S) is the concatenation of all Hi(S) for i = 0, . . . , logn.

The embedding φ′′ can be shown to satisfy the following property based on
a variation of Lemma 8.

Theorem 4. Ω(MV(S,R)) = ||φ′(S)− φ′(R)||1 = O(MV(S,R) logn log∗ n).

4.3 Approximately Computing the Edit Distance
in (Near) Linear Time

Given γ > 1, a γ-factor approximation algorithm for D(S,R) outputs a value
d such that D(S,R) ≤ d ≤ γ · D(S,R). Recently Bar-Yossef et al. developed
an algorithm that computes D(S,R) within an approximation factor of n3/7 in
Õ(n) time [2]. It was recently shown in [3] a method to apply LCP to compute
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the edit distance between two strings within an approximation factor of n
1
3+o(1)

again in Õ(n) time. Here we summarize this result.
Let S� and R� be as described in Section 4.1 for c = (log n)/ log logn. We

have already demonstrated that D(S�, R�) approximates D(S,R) within a factor
of Õ((2c−1)�). By the use of standard dynamic programming, D(S�, R�) can be
computed in time O((n/c�)2). However, if an upper bound t on D(S,R) is given,
it is possible to approximate D(S,R) by computing D(S�, R�) only along a band
of width 2t/c� around the main diagonal of the dynamic programming table.

By applying this strategy for potential upper bounds on D(S,R), t = 2i, for
i = 1, . . . , O(logn), followed by checking t indeed provides an upper bound, it is
possible to obtain an approximation to D(S,R) as per [3].

Theorem 5. One can compute D(S,R) within an approximation factor of

min{n 1
3 +o(1),D(S,R)

1
2+o(1)}

in time Õ(n).
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Abstract. A word w is central if it has two periods p and q which are
coprime and such that |w| = p+q−2. Central words play an essential role
in the combinatorics of Sturmian words. The aim of this paper is to give
an overview on central words focusing some recent developments in the
study of their structure, combinatorics, and arithmetics. Moreover, some
results are concerned with remarkable languages of central words such
as central codes and Farey’s codes. Another interesting class of central
languages is given by the so-called Farey languages which give faithful
representations of Farey’s series.

1 Introduction

A Sturmian word is an infinite word such that for any integer n ≥ 0 the number
of its distinct factors is equal to n + 1. Sturmian words are of great interest
in various fields such as Algebra, Theory of numbers, Physics, and Computer
science. They have been studied for at least two centuries with a great number
of research papers on the subject mainly in recent years. Two valuable overviews
on Sturmian words are in [4, Chap. 2] and [1, Chap.s 10–11].

A geometrical definition of a Sturmian word is the following: consider the
sequence of the cuts (cutting sequence) in a squared lattice made by a ray having
a slope which is an irrational number. A horizontal cut is denoted by the letter
b, a vertical cut by a and a cut with a corner by ab or ba. Any such cutting
sequence is a Sturmian word. Sturmian words represented by cutting sequences
produced by rays starting from the origin are called standard or characteristic.

The most famous Sturmian word is the Fibonacci word

f = abaababaabaababaababaabaababaabaab · · · .

which is the limit of the sequence of words (fn)n≥0, inductively defined by:

f0 = b, f1 = a, and fn+1 = fnfn−1 for n ≥ 1 .

Standard Sturmian words can be equivalently defined in the following way
which is a natural generalization of the definition of the Fibonacci word. Let
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c0, c1, . . . , cn, . . . be any sequence of integers such that c0 ≥ 0 and ci > 0 for
i > 0. We define, inductively, the sequence of words (sn)n≥0, where

s0 = b, s1 = a, and sn+1 = scn−1
n sn−1 for n ≥ 1 .

The sequence (sn)n≥0 converges to a limit s which is an infinite standard Stur-
mian word. Any standard Sturmian word is obtained in this way. We shall denote
by Stand the set of all the words sn, n ≥ 0 of any standard sequence (sn)n≥0.
Any word of Stand is called finite standard Sturmian word.

In the study of combinatorial properties of Sturmian words a crucial role is
played by the set PER of all finite words w having two periods p and q such that
gcd(p, q) = 1 and |w| = p + q − 2.

The set PER was introduced in [14] where its main properties were studied.
In particular, it has been proved that PER is equal to the set of the palindromic
prefixes of all standard Sturmian words. The words of PER, which are in a two-
letter alphabet, have been called central Sturmian words, or simply central words
in [4].

The aim of this paper is to give an overview on central words focusing some
recent developments in the study of their structure, combinatorics, and arith-
metics. Moreover, some results are concerned with remarkable languages of cen-
tral words (central languages) such as the class of harmonic and gold words [7].
A further interesting case is when the language is a code (central code) [8]. A
suitable class of central codes are the so-called Farey codes which are maximal
prefix central codes. Another remarkable class of central languages are the so-
called Farey languages of order n which give faithful representations of Farey’s
series of order n [9].

2 Central Words

The periodicity theorem of Fine and Wilf (cf. [18]) states that if a word w has
two periods p and q and length |w| ≥ p + q − gcd(p, q), then w has also the
period gcd(p, q). Therefore a central word having the coprime periods p and q is
either a power of a single letter or it has the maximal length p + q − 2 to which
the theorem of Fine and Wilf does not apply. The empty word ε is assumed
to be a central word (this is formally coherent with the definition if one takes
p = q = 1).

The set PER of all central words on a fixed binary alphabet A = {a, b} has
remarkable structural properties (cf. [2, 4, 10–12, 14]). For instance, PER is equal
to the set of palindromic prefixes of all standard Sturmian words. Moreover, the
set St of all finite factors of all Sturmian words equals the set of factors of PER.
The set Stand of all finite standard Sturmian words is given by

Stand = A ∪ PER{ab, ba} . (1)

Thus, any finite standard Sturmian word which is not a single letter is obtained
by appending ab or ba to a central word. We recall [14] that for any n ≥ 0 the
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number of central words of length n is given by φ(n + 2), where φ is the Euler
totient function.

The following useful characterization of central words is a slight generaliza-
tion of a statement proved in [12] (see also [8, 17]).

Proposition 1. A word w is central if and only if w is a power of a single letter
or it satisfies the equation

w = w1abw2 = w2baw1

with w1, w2 ∈ A∗. Moreover, in this latter case, w1 and w2 are central words,
p = |w1| + 2 and q = |w2| + 2 are coprime periods of w, and min{p, q} is the
minimal period of w.

From the previous proposition and (1) one derives that any standard word
is the product of two palindromes.

There exist palindromes in St which are not central. For instance, there are
20 palindromes of length 9, whereas the number of central words of length 9 is
10. One can prove that any palindrome in St is a ‘median’ factor of a central
word (cf. [5, 13]). An exact formula which gives for any integer n ≥ 0 the number
of Sturmian palindromes of length n has been recently found in [13], where an
interesting characterization of Sturmian palindromes has been also given.

A central word w is called gold if its minimal period πw and the period
q = |w|+ 2− πw are prime numbers. For instance, the central word w = abaaba
is a gold word. Gold words were introduced in [7], where some remarkable com-
binatorial properties have been studied. We limit ourselves to recall here that
any element of St is a factor of a gold word.

An interesting recent result on standard words is related to the Burrows-
Wheeler transform, which is a useful tool for data compression [6]. In [19] it has
been proved that the Burrows-Wheeler transform of a word w ∈ A∗ has the form
bras with gcd(r, s) = 1 if and only if w is a conjugate of a standard word.

2.1 Generation

For any word w we denote by w(−) the shortest palindrome having the suffix w.
The word w(−) is called the palindromic left-closure of w. For any language X ,
we set X(−) = {w(−) | w ∈ X}. The following lemma was proved in [12].

Lemma 1. For any w ∈ PER, one has (aw)(−), (bw)(−) ∈ PER. More precisely,
if w = w1abw2 = w2baw1, then

(aw)(−) = w2baw1abw2 , (bw)(−) = w1abw2baw1 .

If w = xn with {x, y} = A, then (xw)(−) = xn+1 and (yw)(−) = xnyxn.

There exist two different, and in some respect dual, methods of constructing
central words. The first method, based on the operation of palindromic left-
closure, was introduced in [12]. By Lemma 1 we can define the map

ψ : A∗ → PER,



Central Sturmian Words: Recent Developments 39

as follows: ψ(ε) = ε and for all v ∈ A∗, x ∈ A,

ψ(vx) = (xψ(v))(−) .

The map ψ : A∗ → PER is a bijection. Thus, for any w ∈ PER there exists
a unique word v ∈ A∗ such that w = ψ(v). The word v will be called the
ψ-generating word of w. One has that for all v, u ∈ A∗

ψ(vu) ∈ A∗ψ(v) ∩ ψ(v)A∗ .

Example 1. Let w = abba. One has

ψ(a) = a ,

ψ(ab) = aba ,

ψ(abb) = ababa ,

ψ(abba) = ababaababa .

In the sequel we shall denote by E the automorphism of A∗ defined by
E(a) = b, E(b) = a. From the definition one has that for any x ∈ A∗, ψ(E(x)) =
E(ψ(x)).

As usually, one can extend ψ to the subsets of A∗ by setting, for all X ⊆ A∗,
ψ(X) = {ψ(x) | x ∈ X}. In particular, one has ψ(aA∗) = PERa and ψ(bA∗) =
PERb, where

PERa = PER∩aA∗ and PERb = PER∩bA∗ .

A second method to generate PER is obtained by introducing a further bi-
jection ϕ : A∗ → PER based on some endomorphisms of A∗. More precisely, let
μ and λ be the morphisms defined as

μ(a) = ab, μ(b) = a, and λ(a) = a, λ(b) = ab .

The morphism μ is the so-called Fibonacci morphism and λ = μE.
Let ϕ be the map defined on A∗ as follows: ϕ(ε) = ε, ϕ(a) = a, and for

w ∈ aA∗,
ϕ(wa) = λ(ϕ(w))a, ϕ(wb) = μ(ϕ(w))a .

Moreover, for w ∈ bA∗ one sets ϕ(w) = E(ϕ(E(w))). From the definition one
has that for any w ∈ A∗, ϕ(E(w)) = E(ϕ(w)). It has been proved [10, 11] that
ϕ is a bijection of A∗ onto PER. Thus, for any w ∈ PER there exists a unique
word v ∈ A∗ such that w = ϕ(v). The word v will be called the ϕ-generating
word of w.

Example 2. Let w = abba. One has

ϕ(a) = a ,

ϕ(ab) = aba ,

ϕ(abb) = abaaba ,

ϕ(abba) = aabaaabaa .
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The inner bijection T = ψ−1ϕ of A∗ which maps the ϕ-generating word
of a central word into the corresponding ψ-generating word, called standard
correspondence, has been studied in [10].

2.2 Arithmetization

Let I be the set of all irreducible positive fractions. We consider the map θ :
PER → I, called the ratio of periods, defined as follows. By Proposition 1 any
w ∈ PER \{ε} has the periods p = πw and q = |w| + 2 − πw, where πw is the
minimal period of w. We set

θ(w) =
p

q
if w ∈ PERa , θ(w) =

q

p
if w ∈ PERb .

Moreover,

θ(ε) =
1
1

.

As proved in [12] the map θ is a bijection.
As is well known, for any w ∈ PER the numbers |w|a + 1 and |w|b + 1 are

coprime so that one can introduce the map η : PER → I defined by

η(w) =
|w|b + 1
|w|a + 1

.

The map η is a bijection [2] that we call rate. We observe that the rate η(w)
is the ‘slope’ of the standard words wab and wba. As one easily checks, for any
w ∈ PER one has

η(E(w)) =
1

η(w)
.

Any word w ∈ aA∗ can be uniquely represented as:

w = aα1bα2aα3bα4 · · ·xαn ,

with αi > 0, i = 1, . . . , n and x = a or x = b according to the parity of n. As
is well known (cf. [2]), η(ψ(w)) and θ(ψ(w)) have a development in continued
fractions given, respectively, by

η(ψ(w)) = [0;α1, α2, . . . , αn−1, αn + 1] ,

θ(ψ(w)) = [0;αn, αn−1, . . . , α2, α1 + 1] .
(2)

Example 3. Let w = ab2a2. One has ψ(w) = ababaababaababa. Thus, η(ψ(w)) =
[0; 1, 2, 3] = 7/10 and θ(ψ(w)) = [0; 2, 2, 2] = 5/12.

Since θ and η are two bijections between PER and I, one has that θ−1η is an
inner bijection of PER. One can easily derive from (2) that θ−1η is involutory,
i.e., θ−1η = η−1θ. In the sequel θ−1η will be called the natural involution of
PER. We notice that the natural involution is a length preserving map. Indeed,
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if θ(w) = η(w′) = h/k, w,w′ ∈ PER, then from the definition it follows easily
that |w| = |w′| = h + k − 2.

The fixpoints of the natural involution of PER have been called harmonic cen-
tral words or, simply, harmonic words [7]. The following theorem, which synthe-
sizes some results proved in [7], gives some characterizations of harmonic words.
We recall that a word v ∈ A∗ is called sesquipalindrome if v = E(v∼) = (E(v))∼,
where ∼ denotes the reversal operation. We say that a rational number α > 1
has a symmetric development in continued fractions if α = [q0; q1, . . . , qn] with
qi = qn−i for i = 0, . . . , n.

Theorem 1. Let w be a central word having minimal period πw. The following
conditions are equivalent:

– w is harmonic,
– the generating word ψ−1(w) is a palindrome or a sesquipalindrome,
– 1 + 1/θ(w) (or 1 + 1/η(w)) has a symmetric development in continued frac-

tions,
– π2

w ≡ ±1 (mod |w|+ 2).

We recall that the Fibonacci word f and E(f) are the only infinite standard
Sturmian words having all palindromic prefixes harmonic. The class Harm of
harmonic words is of great interest since one can prove that any element of St
is a factor of a harmonic word, i.e.,

St = Fact(Harm) .

Example 4. Let w be the central word aabaabaa. One has θ(w) = η(w) =
[0; 2, 3] = 3/7. The generating word ψ−1(w) of w is the sesquipalindrome a2b2.
The rational number 1 + 1/θ(w) has the symmetric development in continued
fractions [3; 3]. Finally, π2

w = 9 ≡ −1 (mod 10).

2.3 Some Inner Bijections of A∗

We introduce three maps T1, T2, and T3 from A∗ to A∗ which can be defined in
terms of suitable operations on the words of A∗. These maps are bijections of A∗

and length preserving. Moreover, they are related to the natural inner bijection
of PER and to the generation maps ψ and ϕ.

The map T1 is defined as follows: T1(ε) = ε and if w = a1a2 . . . ak, ai ∈ A,
1 ≤ i ≤ k, then T1(w) = b1b2 . . . bk where b1 = a1 and for 1 < i ≤ k,

bi =
{

bi−1 if ai = a1 ,
E(bi−1) if ai = E(a1) .

For instance, one has T1(aabbba) = aababb. The map T2 is defined for any w ∈ A∗

by

T2(w) =
{

E(w∼) if w ∈ aA∗b ∪ bA∗a ,
w∼ otherwise.
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Therefore, T2(aabbba) = abbbaa and T2(aabbb) = aaabb. Finally, the map T3 is
defined as T3(ε) = ε and for any x ∈ A and w ∈ A∗ as

T3(xw) = xw∼ .

Thus, for instance, T3(abbbaa) = aaabbb.
From the definition one has that the maps T1, T2, and T3 are length pre-

serving. Moreover, T2 and T3 are involutory whereas T1 is not. For instance,
T 2

1 (aabbba) = aabbab. The following theorem summarizes some results obtained
in [9].

Theorem 2. The following holds:

– T1 = ψ−1θ−1ηϕ,
– T2 = ψ−1θ−1ηψ,
– T3 = ϕ−1θ−1ηϕ.

Moreover, T = T2T1 = ψ−1ϕ is the standard correspondence.

The preceding theorem shows, in particular, that the maps T1, T2, T3, and
T are inner bijections of A∗.

One can naturally introduce the bijections Fa, Ga, Ra, and Sa of A∗ in I
defined as:

Fa = θψ, Ga = ηϕ, Ra = θϕ, and Sa = ηψ .

The maps Fa and Sa are called, respectively, the Farey map and the Stern-Brocot
map [2, 10]. From the preceding theorem one derives:

T1 = Fa−1 Ga = Sa−1 Ra , T2 = Sa−1 Fa , T3 = Ra−1 Ga ,

and
T = Sa−1 Ga = Fa−1 Ra .

3 The Tree of Irreducible Fractions

We introduce in I the binary relation⇒ defined as follows: for p/q, r/s ∈ I, one
sets

p

q
⇒ r

s
if p ≤ q , r ∈ {p, q} , s = p + q or p ≥ q , s ∈ {p, q} , r = p + q .

One easily verifies that the graph of this relation is a complete binary tree with
root 1/1.

We denote by ∗⇒ the reflexive and transitive closure of ⇒. For instance, one
has 1/2 ⇒ 2/3 ⇒ 2/5 ⇒ 5/7, so that 1/2 ∗⇒ 5/7. Moreover, for any n ≥ 0 we
denote by n⇒ the nth power of the relation ⇒. Thus, 1/2 3⇒ 5/7.

The two following lemmas [9] give some insight in the structure of the deriva-
tion relation ⇒.
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Lemma 2. Let p/q ∈ I with p < q. There exists r/s ∈ I such that p/q ⇒ r/s
and r/s > p/q if and only if p/q < g − 1, where g is the golden ratio g =
(1 +

√
5)/2.

Lemma 3. Let p/q ∈ I. If

1
1

m⇒ p

q
, m ≥ 0 ,

then m + 1 ≤ max{p, q} ≤ Fm+2, where (Fn)n≥1 is the Fibonacci series. These
bounds are tight.

The following proposition [9] relates the generation of central words by the
maps ψ and ϕ with the derivation relation ⇒.

Proposition 2. Let w and w′ be central words and u and v be the ψ and ϕ
generating words of w. Then

– θ(w) ⇒ θ(w′) if and only if w′ ∈ ψ(uA) = (Aw)(−),
– η(w) ⇒ η(w′) if and only if w′ ∈ ϕ(vA).

Some results of [8, 9, 12] are summarized in the following

Proposition 3. Let x, x′ ∈ A∗. The following conditions are equivalent:

1. x is a prefix of x′,
2. Fa(x) ∗⇒ Fa(x′),
3. Ga(x) ∗⇒ Ga(x′),
4. ψ(x) is a prefix of ψ(x′).

We say that a subset H of I is independent if for any pair of fractions
p/q, r/s ∈ H such that p/q

∗⇒ r/s one has p/q = r/s. A subset H of I is full if
for any fraction p/q ∈ I there exists a fraction r/s ∈ H such that p/q

∗⇒ r/s or
r/s

∗⇒ p/q.
A set X ⊆ A∗ is called prefix if no word of X is a proper prefix of another

word of X . As is well known a prefix set X �= {ε} is a code [3]. From Proposition 3
one can easily prove the following:

Theorem 3. Let X ⊆ A∗. The following conditions are equivalent:

1. X is a prefix set,
2. Fa(X) is an independent set,
3. Ga(X) is an independent set.

Theorem 4. Let X ⊆ A∗ be a prefix code. The following conditions are equiv-
alent:

1. X is a maximal prefix code,
2. Fa(X) is a full set,
3. Ga(X) is a full set.
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4 Central Codes

Our concern in this section will be with central languages which are codes,
i.e., bases of free submonoids of A∗ [3]. These codes, which are in a two-letter
alphabet, are called Sturmian central codes or, simply, central codes.

For instance, the sets X1 = {a, b}, X2 = {b, aa, aba}, X3 = {aa, aabaa,
babbab}, and X4 = {b2} ∪ (ab)∗a are central codes.

Central codes have been studied in [8]. We report here only some main results.
A central code is maximal if it is not properly included in another central

code. By using a classical argument based on the Zorn property, which is satisfied
by the family of central codes, one easily derives that any central code is included
in a maximal central code. For instance, one can prove that the set X = PER \D,
where

D =
⋃
i≥0

((ab)ia)∗ ∪ ((ba)ib)∗ , (3)

is a maximal central code.
We say that a set X is PER-complete if PER ⊆ FactX∗. This is equivalent

to the statement that any word of St is a factor of a word of X∗.

Theorem 5. A maximal central code X is PER-complete.

Indeed, suppose by contradiction that there exists a word u ∈ PER \FactX∗.
We can assume, without loss of generality, that u ∈ PERa so that θ(u) = p/q

with p < q. Since p/q
∗⇒ (p + q)/(2p + q), by Proposition 3, u is a prefix of the

word w ∈ PER such that θ(w) = (p+q)/(2p+q). As Y = X∪{w} is not a code,
there exist h, k > 0 and words y1, . . . , yh, y

′
1, . . . , y

′
k ∈ Y such that y1 �= y′1 and

y1 · · · yh = y′1 · · · y′k .

Since u is a prefix of w, one has that w �∈ FactX∗. Moreover, as X is a code,
one derives that w has to occur in both sides of the previous equation, i.e., there
exist minimal positive integers i and j such that w = yi = y′j . With no loss of
generality, we can assume |y1 · · · yi−1| < |y′1 · · · y′j−1|. Then one has

y′1 · · · y′j−1 = y1 · · · yi−1s, sw = wt, yi+1 · · · yh = ty′j+1 · · · y′k , (4)

for suitable non-empty words s, t ∈ A∗. This equation shows that |s| is a period
of w, so that |s| ≥ πw = p + q = |u| + 2. Since u is a prefix of w, one derives
from (4) that u is a prefix of s and, consequently, a factor of y′1 · · · y′j−1 ∈ X∗,
which is a contradiction.

The following proposition whose proof is quite cumbersome since it requires
several technical lemmas, shows that it does not exist a non-trivial finite PER-
complete central code.

Proposition 4. Let X be a finite PER-complete central code. Then X = A.
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By the previous proposition and Theorem 5 it follows that any maximal
central code X �= A is infinite.

The following proposition shows that PER-completeness is a necessary but
not sufficient condition in order that a central code is maximal.

Proposition 5. There exists a PER-complete central code which is not a max-
imal central code.

Indeed, one can prove that the set Y = PER \(D ∪ {aabaa}), where D is
given by (3), is a PER-complete central code.

Proposition 6. A central code X �= A is not complete, i.e., A∗ �⊆ FactX∗.

As any maximal code is complete [3], by the previous proposition, one derives
that a central code X �= A is not maximal as code.

4.1 Prefix Central Codes

A particular subclass of central codes is formed by prefix central codes, i.e., cen-
tral codes which are prefix codes. Since the words of such codes are palindromes,
one has that a prefix central code is also a suffix code and then a biprefix code.

For instance, the set X = {a, bab, bb} is a prefix central code. The following
theorem characterizes prefix central codes.

Theorem 6. Let Y ⊆ PER. The following conditions are equivalent:

1. Y is prefix,
2. Y = ψ(X), with X a prefix set,
3. θ(Y ) is an independent set.

Indeed, as a trivial consequence of Proposition 3 one has that Y = ψ(X) is a
prefix set if and only if X is a prefix set. By Theorem 3, this occurs if and only
if Fa(X) = θ(Y ) is an independent set.

We call pre-code of a prefix central code Y the prefix code X such that
Y = ψ(X). For instance, the pre-code of {a, bab, bb} is the prefix code {a, ba, bb}
and the pre-code of the prefix central code {aba, bb, babab, babbab} is the prefix
code {ab, bb, baa, bab}. The pre-code of the prefix central code {anban | n ≥ 0}
is the prefix code a∗b.

Theorem 6 shows that the property of being a prefix code is preserved by
ψ and ψ−1. On the contrary, the property of being a code is not, in general,
preserved by ψ or ψ−1, as shown by the following example.

Example 5. The set X = {ab, ba, abbb} is a code whereas the set ψ(X) =
{aba, bab, abababa} is not a code. Conversely, the set X = {a, ab, bab} is not
a code whereas ψ(X) = {a, aba, babbab} is a code.

A prefix central code is a maximal prefix central code if it is not properly
included in another prefix central code. The following propositions have been
proved in [8].
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Proposition 7. A prefix central code is a maximal prefix central code if and
only if its pre-code is a maximal prefix code.

Proposition 8. A set Y ⊆ PER is a maximal prefix central code if and only if
Y �= {ε} and θ(Y ) is an independent and full set.

Indeed, by Theorem 6 and Proposition 7, Y is a maximal prefix central code
if and only if Y = ψ(X), with X a maximal prefix code. By Theorems 3 and 4,
this occurs if and only if Y �= {ε} and Fa(X) = θ(Y ) is an independent and full
set.

4.2 Farey Codes

For any positive integer n, we consider the set

Fn =
{

p

q
∈ I

∣∣∣∣ 1 ≤ p ≤ q ≤ n

}
.

As is well known, by ordering the elements of Fn in an increasing way one obtains
the Farey series of order n (cf. [16]). Now, set for n ≥ 0,

Gn =
{

p

q
∈ Fn+1

∣∣∣∣ p + q − 2 ≥ n

}
and G′

n =
{

q

p
∈ I

∣∣∣∣ pq ∈ Gn

}
.

We introduce the sets of central words Δn,a, Δn,b, and Δn defined as

Δn,a = {s ∈ PER | θ(s) ∈ Gn} , Δn,b = {s ∈ PER | θ(s) ∈ G′
n} ,

Δn = Δn,a ∪Δn,b .

Since θ is a bijection, one has θ(Δn,a) = Gn and θ(Δn,b) = G′
n.

One easily checks that Δ0 = Δ0,a = Δ0,b = {ε} and for n > 0, Δn,a ⊆ PERa

and Δn,b ⊆ PERb. Moreover, the words of Δn,b are obtained from those of Δn,a

by interchanging the letter a with b. The following noteworthy lemma holds [9]:

Lemma 4. For all n ≥ 0, the set Gn ∪ G′
n is independent and full.

Since θ(Δn) = Gn ∪ G′
n, from the preceding lemma and Proposition 8, one

derives:

Proposition 9. For all n > 0, Δn is a maximal prefix central code.

For n > 0, the code Δn has been called the Farey code of order n [12].

Example 6. In the following table, we report the elements of G6 with the corre-
sponding words of the prefix code Δ6,a and their lengths.
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1/7 aaaaaa 6
2/7 abababa 7
3/7 aabaabaa 8
4/7 aabaaabaa 9
3/5 abaaba 6
5/7 ababaababa 10
4/5 aaabaaa 7
5/6 aaaabaaaa 9
6/7 aaaaabaaaaa 11

Some interesting properties of Farey codes have been proved in [12] and [8].
We recall that for all n > 0,

CardΔn =
n+1∑
i=1

φ(i) .

The length of the words of Δn is between n and 2n − 1. More precisely, for
0 ≤ h ≤ n− 1 one has

Card(Δn ∩ An+h) = φ[h+1,n+1](n + h + 2) ,

where φ[α,β](n) denotes the number of integers in the interval [α, β] which are
coprime with n.

The following proposition gives an equivalent definition for Farey codes.

Proposition 10. For any n ≥ 0 one has

Δn = {w ∈ PER | n ≤ |w| ≤ n + πw − 1} .

Indeed, if n = 0 the result is trivial. Now suppose that w ∈ PERa and
set θ(w) = p/q, so that p = πw and q = |w| − πw + 2. One has w ∈ Δn,a if
and only if p/q ∈ Fn+1 and p + q − 2 = |w| ≥ n. Since p/q ∈ Fn+1 if and
only if q = |w| − πw + 2 ≤ n + 1, one derives that w ∈ Δn,a if and only if
n ≤ |w| ≤ n + πw − 1. If w ∈ PERb, by a similar argument one obtains that
w ∈ Δn,b if and only if n ≤ |w| ≤ n + πw − 1.

For any n ≥ 0 we set
Un = PER∩An .

For n > 0, Un is a maximal uniform central code [8]. For instance, one has

U5 = {aaaaa, aabaa, ababa, babab, bbabb, bbbbb} ,
U7 = {aaaaaaa, aaabaaa, abababa, bababab, bbbabbb, bbbbbbb} .

The following proposition which summarizes some results proved in [8] shows
some important relations between Farey codes of consecutive orders and maximal
uniform central codes.

Proposition 11. For any n ≥ 0 the following holds:
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– Δn \Δn+1 = Un,
– Δn+1 \Δn = (AUn)(−) = {w ∈ PER | |w| = n + πw},
– Δn+1 = (Δn \ Un) ∪ (AUn)(−).

Since by the preceding proposition, Un ⊆ Δn, n ≥ 0, one derives PER =⋃
n≥0 Un ⊆

⋃
n≥0 Δn ⊆ PER. Therefore, one has

PER =
⋃
n≥0

Δn .

Proposition 12. Let i and n be integers such that 0 ≤ i ≤ n. Any element of
Δi is a palindromic prefix of an element of Δn.

Indeed, it is sufficient to prove that any w ∈ Δi is a palindromic prefix of an
element of Δi+1. If w ∈ Δi \ Ui, then by Proposition 11 one has w ∈ Δi+1. If,
on the contrary, w ∈ Ui, then w is a palindromic prefix of the word (aw)(−) ∈
Δi+1 \Δi by Proposition 11.

5 Farey Languages

In this section we introduce for each n > 0 two languages of central words Ln

and Mn. The language Ln (resp., Mn) is called the Farey (resp., dual Farey)
language of order n. The name is motivated by the fact that for any n > 0, Ln

and Mn give faithful representations of the set of Farey’s fractions of order n.
For any n > 0 the language Ln is defined as

Ln =
n−1⋃
k=0

Δk,a .

By Proposition 10 one has

Ln = {w ∈ PERa ∪{ε} | |w| ≤ n + πw − 2} .

The set Ln is called the Farey language of order n. Indeed, the following propo-
sition [9] shows that Ln gives a faithful representation of the set Fn.

Proposition 13. For any n > 0 one has θ(Ln) = Fn.

It is remarkable that for any n > 0 the language Ln coincides with the set of
palindromic prefixes of the Farey code Δn−1,a. More precisely, denoted by PAL
the set of palindromes over A and, for any X ⊆ A∗, by Pref X the set of prefixes
of the words of X , one has:

Proposition 14. For all n > 0, Ln = PAL∩Pref Δn−1,a.

Indeed, by Proposition 12 one has Δi,a ⊆ PAL∩Pref Δn−1,a for i = 1, . . . , n−
1 so that Ln ⊆ PAL∩Pref Δn−1,a. Conversely, let w ∈ PAL∩Pref Δn−1,a. Thus,
there exists v ∈ Δn−1,a such that v = wλ, λ ∈ A∗. Since any palindromic prefix
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of a central word is central, one has w ∈ PER. We set θ(w) = r/s and θ(v) = p/q.
By Proposition 3 one has r/s

∗⇒ p/q. Thus, s ≤ q ≤ n. Therefore, r/s ∈ Fn so
that by Proposition 13, w ∈ Ln.

The following proposition collects some results proved in [9]:

Proposition 15. For all n > 0 one has

– Ln+1 \ Ln = {w ∈ PERa | |w| = n + πw − 1} = Δn,a \Δn−1,a ,
– Card(Δn,a \Δn−1,a) = Card(Fn+1 \ Fn) = φ(n + 1) ,
– Ln = Δn−1,a ∪

⋃n−2
i=0 Ui,a ,

where for any i ≥ 0, Ui,a = Ui \ bA∗.

5.1 Dual Farey’s Languages

For n ≥ 0 we set

Hn,a = {s ∈ PER | η(s) ∈ Gn} , Hn,b = {s ∈ PER | η(s) ∈ G′
n} ,

and
Hn = Hn,a ∪Hn,b.

One easily checks that H0 = H0,a = H0,b = {ε} and for n > 0, Hn,a ⊆ PERa

and Hn,b ⊆ PERb. Moreover, the words of Hn,b are obtained from those of Hn,a

by interchanging the letter a with b. Since η is a bijection one has η(Hn,a) = Gn

and η(Hn,b) = G′
n.

Proposition 16. For any n > 0 and x ∈ A one has

Hn,x = {w ∈ PERx | |w|x ≤ n ≤ |w|} .

Indeed, let w ∈ PERa. Since η(w) = (|w|b +1)/(|w|a +1), one has η(w) ∈ Gn

if and only if |w|a ≤ n and |w| ≥ n. The proof in the case w ∈ PERb is similar.

Example 7. In the following table, we report the elements of G6 with the corre-
sponding words of the set H6,a and their lengths.

1/7 aaaaaa 6
2/7 aaabaaa 7
3/7 aabaabaa 8
4/7 abaabaaba 9
3/5 abaaba 6
5/7 ababaababa 10
4/5 abababa 7
5/6 ababababa 9
6/7 abababababa 11
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We remark that differently from Δn, the set Hn in general is not a code. For
instance, H6,a is not a code.

The following proposition, which is for some aspects dual of Proposition 11,
shows some remarkable relations existing between H sets and uniform central
codes [9].

Proposition 17. For any n ≥ 0 and x ∈ A one has

– Hn,x \Hn+1,x = Un,x ,
– Hn+1,x \Hn,x = {w ∈ PERx | |w|x = n + 1} ,
– Hn+1,a \Hn,a = (λ(Un,a) ∪ μ(Un,a))a = μ(Un)a ,
– Hn+1,a = (Hn,a \ Un,a) ∪ (λ(Un,a) ∪ μ(Un,a))a .

By the preceding proposition one derives Un ⊆ Hn, n ≥ 0, so that PER =⋃
n≥0 Un ⊆

⋃
n≥0 Hn ⊆ PER. Hence,

PER =
⋃
n≥0

Hn .

For any n > 0 we introduce the language

Mn =
n−1⋃
k=0

Hk,a .

By Proposition 16 one easily derives that

Mn = {w ∈ PERa ∪{ε} | |w|a ≤ n− 1} . (5)

The set Mn is called the dual Farey language of order n. In fact, also Mn

gives a faithful representation of the set Fn, as shown by the following [9]:

Proposition 18. For any n > 0 one has η(Mn) = Fn.

One can easily verify that Ln = Mn for n = 1, 2, 3. For n ≥ 4 one has
Ln �= Mn. Indeed, one can prove that for any n > 0 and (n + 1)/2 < k ≤ n− 1
the word w = ak−1bak−1 belongs to Ln \Mn.

Proposition 19. For all n > 0, PAL∩Pref Hn−1,a ⊆Mn.

Indeed, if w ∈ PAL∩Pref Hn−1,a, there exists v ∈ Hn−1,a such that v = wλ,
λ ∈ A∗. Since any palindromic prefix of a central word is central, one has w ∈
PER. By (5) one has |w|a ≤ |v|a ≤ n− 1, so that w ∈Mn.

We observe that the inclusion in the previous proposition is in general strict.
For instance, one can verify that w = aaabaaa ∈ H6,a ⊆ M9. However, w is not
a palindromic prefix of H8,a.

The following proposition, which is the dual of Proposition 15, synthesizes
some results proved in [9]:

Proposition 20. For all n > 0 one has

– Mn+1 \Mn = {w ∈ PERa | |w|a = n + 1} = Hn,a \Hn−1,a ,
– Card(Hn,a \Hn−1,a) = Card(Fn+1 \ Fn) = φ(n + 1) ,
– Mn = Hn−1,a ∪

⋃n−2
i=0 Ui,a .
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6 Farey Pre-codes

For any n > 0, the pre-codes of Δn,a, Δn,b, and Δn will be respectively denoted
by Pn,a, Pn,b, and Pn. The prefix code Pn = Pn,a ∪Pn,b will be called the Farey
pre-code of order n.

Example 8. In the following table we report the elements of Δ6,a, the corre-
sponding elements of the pre-code P6,a, and their lengths.

aaaaaa 6 aaaaaa 6
abababa 7 abbb 4
aabaabaa 8 aabb 4
aabaaabaa 9 aaba 4
abaaba 6 aba 3
ababaababa 10 abba 4
aaabaaa 7 aaab 4
aaaabaaaa 9 aaaab 5
aaaaabaaaaa 11 aaaaab 6

As a consequence of Propositions 9 and 7 one has

Proposition 21. For all n > 0, the Farey pre-code of order n is a maximal
prefix code.

In view of Proposition 11 one easily derives:

Proposition 22. For all n > 0 one has

Pn+1 = (Pn \ Γn) ∪ ΓnA ,

where Γn = ψ−1(Un).

The following proposition [9], whose proof is based on Lemma 3, gives the
maximal and minimal value of the lengths of the words of the Farey pre-code of
order n.

Proposition 23. Let n > 0. For all x ∈ Pn one has

min{k | Fk+3 ≥ n + 2} ≤ |x| ≤ n .

These bounds are tight.

We consider also the sets Qn = ϕ−1(Hn), Rn = ψ−1(Hn), and Sn =
ϕ−1(Δn). For all n > 0 the following relations hold [9]:

Qn = T−1
1 (Pn) , Rn = T2(Pn) , and Sn = T3T

−1
1 (Pn) , (6)

where T1, T2, and T3 are the inner bijections of A∗ introduced in Sect. 2. There-
fore, the sets Qn, Rn, and Sn can be determined from Pn by the maps T1, T2,
and T3. Since these maps are length preserving, these sets and Pn have the same
word-length distribution. Moreover, for any n > 0, Qn is a maximal prefix code,
Rn is a maximal suffix code, and Sn,x = Sn ∩ xA∗, x ∈ A, is a suffix code.

In the following table we report the elements of P6,a and the corresponding
elements of the codes Q6,a, R6,a, and S6,a computed by using (6)
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P6,a Q6,a R6,a S6,a

aaaaaa aaaaaa aaaaaa aaaaaa
abbb abaa aaab aaab
aabb aaba aabb aaba
aaba aabb abaa abba
aba abb aba abb
abba abab abba abab
aaab aaab abbb abaa
aaaab aaaab abbbb abaaa
aaaaab aaaaab abbbbb abaaaa

7 Farey Languages and Riemann’s Hypothesis

As we have seen in Sect. 2 one can introduce two bijections of the set of central
words onto the set of positive irreducible fractions, namely the ratio of periods
θ and the rate η.

These bijections allow one to define in PER two natural total order relations
by setting for any w1, w2 ∈ PER,

w1 ≤ w2 if θ(w1) ≤ θ(w2)

and
w1 � w2 if η(w1) ≤ η(w2) .

For any L ⊆ PER and x ∈ PER one can consider the sets

L ∗ x = {w ∈ L | w ≤ x} and L ◦ x = {w ∈ L | w � x} .

We define the θ-order of x relative to L the quantity

ordθ
L x = Card(L ∗ x) .

In a similar way, the η-order of x relative to L is defined as

ordη
L x = Card(L ◦ x) .

In the sequel we shall mainly refer to the θ-order and denote ordθ
L x simply by

ordL x.
If L is finite, then ordL x < ∞. If L is infinite, the order of an element

x ∈ PER may be infinite or finite. For instance, the order of any central word
with respect to PER is infinite. On the contrary, if L = {w ∈ PER | θ(w) =
(n−1)/n, n > 1}, then the order of any central word with respect to L is finite.
If L ⊆M ⊆ PER, then for all x ∈ PER one has ordL x ≤ ordM x.

From the definition one derives that if L =
⋃n

i=1 Ki, where Ki, i = 1, . . . , n,
are pairwise disjoint sets, then for all x ∈ PER,

ordL x =
n∑

i=1

ordKi x . (7)
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If L ⊆ PER has finite cardinality k, then∑
x∈L

ordL x =
k(k + 1)

2
.

Given a finite subset L of PER and a word x ∈ PER one can consider the
quantity

δL(x) = θ(x)− ordL x

CardL
.

If x ∈ PERa the companion of x is the word x′ ∈ PERa such that θ(x′) =
1 − θ(x). A set L ⊆ PERa ∪{ε} is closed by companion if ε ∈ L and for any
x ∈ L \ {ε} the companion of x is in L. The following lemma holds [9]:

Lemma 5. Let L ⊆ PERa ∪{ε} be a central language of finite cardinality and
closed by companion. For any x ∈ L \ {ε} one has

δL(x) = −δL(x′) ,

where x′ is the companion of x. Moreover,∑
w∈L

θ(w) =
∑
w∈L

ordL w

k
=

k + 1
2

,

where k = CardL.

Given a finite set L ⊆ PERa ∪{ε} one can introduce the quantity∑
x∈L

|δL(x)|

which gives an evaluation of the regularity of the distribution of θ in L.
In the previous section we have considered for any n ≥ 0 the Farey language

Ln which gives a faithful representation of Fn. The order of a central word x
with respect to Ln will be briefly denoted by ordn x.

We notice that for all x ∈ PERb ∪{ε}, ordn x = CardLn = CardFn = Φ(n),
where Φ(n) =

∑n
i=1 φ(i).

In the sequel we set K0 = {ε} and for n > 0, Kn = Δn,a \ Δn−1,a. The
following proposition holds [9]:

Proposition 24. For any x ∈ PERa ∪{ε},

ordKn x = φ[1,(n+1)θ(x)](n + 1) .

By Proposition 11 one derives that the sets Kn, n ≥ 0, are pairwise disjoint.
For any n ≥ 0 we can decompose Ln as

Ln =
n−1⋃
i=0

Δi,a =
n−1⋃
i=0

Ki .
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By (7) and Proposition 24 one derives that for any x ∈ PERa ∪{ε},

ordn x =
n−1∑
i=0

ordKi x =
n∑

i=1

φ[1,iθ(x)](i) .

Example 9. For n = 5 one has K0 = {ε}, K1 = {a}, K2 = {a2, aba}, K3 =
{a3, a2ba2}, K4 = {a4, ababa, aba2ba, a3ba3}, and

θ(K0) =
{

1
1

}
, θ(K1) =

{
1
2

}
, θ(K2) =

{
1
3
,
2
3

}
,

θ(K3) =
{

1
4
,
3
4

}
, θ(K4) =

{
1
5
,
2
5
,
3
5
,
4
5

}
.

For instance, let w = a2ba2. One has θ(w) = 3/4, ordK0 w = 0, ordK1 w = 1,
ordK2 w = 2, ordK3 w = 2, and ordK4 w = 3, so that ord5 w = 8.

Since for any n ≥ 0 the Farey language Ln is closed by companion and
CardLn = Φ(n), by Lemma 5 one has∑

w∈Ln

θ(w) =
∑

w∈Ln

ordn w

Φ(n)
=

Φ(n) + 1
2

.

Since θ is a bijection, for any x ∈ PER one has ordn x = Card(Ln ∗ x) =
Card θ(Ln ∗ x). Since θ(Ln) = Fn one derives

ordn x = Card
{

p

q
∈ Fn

∣∣∣∣ pq ≤ θ(x)
}

. (8)

If x ∈ Ln, then θ(x) ∈ Fn so that ordn x gives the ‘place’ occupied by θ(x) in
the Farey series of order n.

Let fν , ν = 1, . . . , Φ(n), be the Farey series of order n. A theorem of Franel
and Landau (cf. [15]) shows that the famous Riemann hypothesis on Zeta func-
tion is equivalent to the statement that

Φ(n)∑
ν=1

∣∣∣∣fν −
ν

Φ(n)

∣∣∣∣ = o(n(1/2)+ε)

for all ε > 0 as n→∞. Since CardLn = Φ(n), by (8) one derives

∑
x∈Ln

|δLn(x)| =
Φ(n)∑
ν=1

∣∣∣∣fν −
ν

Φ(n)

∣∣∣∣ ,

so that Riemann’s hypothesis is equivalent to the statement that∑
x∈Ln

|δLn(x)| = o(n(1/2)+ε)

for all ε > 0 as n→∞.
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If one considers the η-order instead of the θ-order, one can obtain results
analogous to the previous ones. In particular, for any finite subset L of PER and
any x ∈ PER one defines the quantity

δη
L(x) = η(x) − ordη

L x

CardL
.

One easily verifies that Riemann’s hypothesis is equivalent to the statement∑
x∈Mn

|δη
Mn

(x)| = o(n(1/2)+ε)

for all ε > 0 as n→∞.
It is noteworthy that Riemann’s hypothesis can be restated in terms of a

combinatorial property of the Farey languages Ln and Mn. We recall that a
similar result was obtained by Mignosi [20] by considering suitable languages of
finite Sturmian words.
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Abstract. Reversible cellular automata (RCA) are models of massively
parallel computation that preserve information. This paper is a short
survey of research on reversible cellular automata over the past fourty
plus years. We discuss the classic results by Hedlund, Moore and Myhill
that relate injectivity, surjectivity and reversibility with each other. Then
we review algorithmic questions and some results on computational uni-
versality. Finally we talk about local reversibility vs. global reversibility.

1 Introduction

Cellular automata (CA) are discrete dynamical systems and models of massively
parallel computation that share many properties of the physical world. They
consist of very large numbers of simple elements that operate in parallel and
interact only locally. The update rules are invariant with respect to location and
time. Most interestingly, by choosing proper update rules one can program into
the system fundamental properties of microscopic physics such as reversibility
and conservation laws without sacrificing computational universality.

Reversible cellular automata (RCA), also known as invertible cellular au-
tomata, are cellular automata that fully preserve information. They are capable
to mimic reversible physical phenomena more closely than any other computa-
tional model proposed so far. Lattice gases are a perfect example of this. But
more importantly, because RCA obey fundamental laws of physics, their hard-
ware implementation may – at least in principle – be more energy efficient than
the implementations of irreversible systems used today. According to the Lan-
dauer’s principle erasure of one bit of information at absolute temperature T
always dissipates at least kT ln 2 Joule of energy, where k is the Bolzmann’s con-
stant. This will eventually become prohibitive for further miniaturization and
increasingly dense packing of irreversible gates such as AND and OR. Reversible
computation has been proposed as an alternative where no bits need to be erased,
hence avoiding the kT ln 2 lower bound on the energy dissipation.

RCA are among the most closely studied types of cellular automata: There
has been a steady stream of results since the early 60’s until today. This survey
article presents these results in a compact form. We give references to the original
sources where complete proofs can be found.
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2 Definitions and Classic Results

A cellular automaton is an infinite lattice of finite state machines, called cells.
The cells are located at the integer lattice points of the d-dimensional Euclidean
space. We refer to the cells by their coordinates, i.e. cells are addressed by the
elements of Zd. Let S be the finite state set. A configuration of the CA is a
function

c : Zd −→ S

where c(x) is the current state of the cell x. The set SZd

of all configurations
is denoted by C(d, S), or briefly C when d and S are known from the context.
Constant functions are called homogeneous configurations.

The cells change their states synchronously at discrete time steps. The next
state of each cell depends on the current states of the neighboring cells according
to an update rule. All cells use the same rule, and the rule is applied to all cells
at the same time. The neighboring cells may be the nearest cells surrounding
the cell, but more general neighborhoods can be specified by giving the relative
offsets of the neighbors. Let N = (x1,x2, . . . ,xn) be a vector of n distinct
elements of Zd. Then the neighbors of a cell at location x ∈ Zd are the n cells
at locations

x + xi, for i = 1, 2, . . . , n.

The local rule is a function f : Sn −→ S where n is the size of the neighborhood.
State f(a1, a2, . . . , an) is the new state of a cell whose n neighbors were at states
a1, a2, . . . , an one time step before. This update rule then determines the global
dynamics of the CA: Configuration c becomes in one time step the configuration
e where, for all x ∈ Zd,

e(x) = f(c(x + x1), c(x + x2), . . . , c(x + xn)).

We say that e = G(c), and call G : C −→ C the global transition function of the
CA.

We have seen that cellular automata are dynamical systems that are ho-
mogeneous and discrete in both time and space, and they are updated locally.
A d-dimensional CA is specified by a triple (S,N, f) where S is the state set,
N ∈ (SZd

)n is the neighborhood vector, and f : Sn −→ S is the local update
rule. We usually identify a cellular automaton with its global transition function
G, and talk about cellular automaton function G, or simply cellular automaton
G. In algorithmic questions G is however always specified using the three finite
items S, N and f .

Let us call a CA injective (surjective) if and only if its global function G is
one-to-one (onto, respectively). The CA is bijective if G is both onto and one-to-
one. A cellular automaton with global function G is called reversible or invertible
if there is cellular automaton function F such that G◦F = F ◦G = id where id is
the identity function. Then F and G are the inverse automata of each other. One
can effectively decide whether two given cellular automata are inverses of each
other: One can namely effectively form the compositions of the two automata
and test whether the compositions are equal to the identity function.
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Example 1. Let d = 1, N = (0, 1) and S = {0, 1}. Cells are laid on a line and
indexed by Z. Each cell i has two neighbors: i itself and i+1. Let the local rule f
be the modulo two addition. This CA is not injective as the two homomogeneous
configurations c0 and c1 consisting entirely of 0’s and 1’s, respectively, are both
mapped into the same configuration c0. The CA is, however, surjective. We call
this CA the Xor -automaton.

2.1 The Curtis-Hedlund-Lyndon Theorem

Let y ∈ Zd be arbitrary. The translation τy by y is the CA with the single
element neighborhood (−y) and the identity local rule. Every translation is a
composition of shifts, i.e. translations by a single cell in one of the coordinate
directions. Homogeneousity in space means that every CA function G commutes
with every translation τ , that is, G ◦ τ = τ ◦G.

Topology turns out to be a useful tool in cellular automata theory. Let us
endow the set C with the Cantor topology, i.e. the topology generated by the
basis of cylinder sets

Cyl(c,M) = {e ∈ C | e(x) = c(x) for all x ∈M}

for c ∈ C and finite M ⊆ Zd. Cylinder sets are both open and closed in the
Cantor topology. This topology is induced by a metric, and most importantly,
the topology is compact. Relevance to cellular automata stems from the fact that
all cellular automata functions are continuous in this topology. In fact, a classic
result from 1969 known as the Curtis-Hedlund-Lyndon theorem states also the
converse:

Theorem 1 ([6]). A function G : SZd −→ SZd

is the global transition function
of a cellular automaton if and only if

(i) G is continuous, and
(ii) G commutes with shifts.

If G is a reversible CA function then G : C −→ C is by definition bijective. Con-
versely, suppose that G is a bijective CA function. Then G has an inverse function
that clearly commutes with the shifts. The inverse function is also continuous
because the space C is compact. So by the Curtis-Hedlund-Lyndon theorem the
inverse is a CA function. We have proved:

Corollary 1 ([6]). A cellular automaton G is reversible if and only if it is
bijective.

The point of the corollary is that in bijective CA each cell can determine its
previous state by looking at the current states in some bounded neighborhood
around them. In symbolic dynamics literature it is customary to call reversible
(one-dimensional) cellular automata automorphisms of the shift dynamical sys-
tem.



60 Jarkko Kari

2.2 The Garden of Eden-Theorem

Sometimes one state q ∈ S is specified as a quiescent state. It should be stable,
which means that f(q, q, . . . , q) = q. The quiescent configuration Q is the con-
figuration where all cells are quiescent: Q(x) = q for all x ∈ Zd. A configuration
c ∈ SZd

is called finite if only a finite number of cells are non-quiescent, i.e. the
support

{x ∈ SZ | c(x) �= q}
is finite. Let us denote by CF (d, S), or briefly CF , the subset of SZd

that contains
only the finite configurations. Because of the stability of q, finite configurations
remain finite in the evolution of the CA, so the restriction GF of G on the finite
configurations is a function CF −→ CF .

A periodic configuration, or more precisely, a spatially periodic configuration
is a configuration that is invariant under d linearly independent translations.
This is equivalent to the existence of d positive integers t1, t2, . . . , td such that
for every x ∈ Zd and every i = 1, 2, . . . , d we have

c(x) = c(x + tiei),

where ei is the i’th unit coordinate vector. Let us denote by CP (d, S), or briefly
CP , the set of periodic configurations. Cellular automata are homogeneous in
space and consequently they preserve periodicity of configurations. The restric-
tion GP of G on the periodic configurations is hence a function CP −→ CP .

Finite configurations and periodic configurations are used in simulations of
cellular automata on computers. Periodic configurations are often referred to as
the periodic boundary conditions on a finite cellular array. For example, in the
case d = 2 this is equivalent to running the CA on a torus that is obtained by
“gluing” together the opposite sides of a rectangle. One should, however, keep
in mind that the behavior of a CA can be quite different on finite, periodic and
general configurations, so experiments done with periodic boundary conditions
may be misleading. One should also keep in mind that GF may be bijective
even if the CA is not reversible. This has led to some confusion on the termi-
nology, especially in some online resources where only finite configurations are
considered.

Example 2. Let d = 1, N = (0, 1) and S = {00, 01, 10, 11}. The first bit of each
state is a control symbol that does not change. If the control symbol of a cell is
0 then the cell is inactive and does not change its state. If the control symbol is
1 then the cell is active and applies the Xor rule of Example 1 on the second
bit. In other words,

f(ab, cd) =
{

ab, if a = 0,
ax, if a = 1, where x = b + d (mod 2).

State 00 is the quiescent state. This Controlled-Xor automaton is easily seen
bijective on finite configurations. It is not injective on unrestricted configurations
as two configurations, all of whose cells are active, have the same image if their
second bits are complements of each other.
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If G is not surjective then there exist Garden-of-Eden configurations, that
is, configurations without a pre-image. A trivial property of any finite set is
that a function from the set into itself is injective if and only if it is surjective.
In cellular automata the same is true only in one-direction: an injective CA is
always surjective, but the converse is not true. However, finite configurations
behave more like finite sets: GF is injective if and only if G is surjective. This
result, known as the Garden-of-Eden theorem, is one of the oldest results in the
theory of cellular automata. The two directions of the theorem are due to E.F.
Moore in 1962 [16] and J. Myhill in 1963 [19]:

Theorem 2 ([16, 19]). GF is injective if and only if G is surjective.

It is trivial that the injectivity of the full function G implies the injectivity
of its restrictions GF and GP , so we immediately get the following corollary:

Corollary 2. Injective CA are also surjective. Hence injectivity, bijectivity and
reversibility are equivalent.

Notice that sets CF and CP are dense in C. Then it follows from the continuity
of G and the compactness of C that the surjectivity of GF or GP implies the
surjectivity of G. The next theorem summarizes these and other known relations.
The proofs can be found, for example, in [4]. The results are summarized in
Figures 1 and 2.

Theorem 3. The following implications are true in every dimension d:

– If G is injective then GP and GF are injective,
– If GP or GF is surjective then G is surjective,
– If GP is injective then GP is surjective,
– If G is injective then GF is surjective.

G injective G   injective

G   surjective

G surjectiveG   injective G   surjective

P

F

F P

Fig. 1. Implications between injectivity and surjectivity properties in one-dimensional
CA
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G injective

G   surjective

G surjectiveG   injective

F

F

G   injectiveP

G   surjectiveP

?

?

?

Fig. 2. Implications between injectivity and surjectivity properties in two- and higher
dimensional CA

In addition, the following implications are true for one-dimensional CA:

– If GP is injective then G is injective,
– If G is surjective then GP is surjective.

The two non-implications in Figure 1 are proved by the automata Xor and
Controlled-Xor of Examples 1 and 2, respectively. Notice that in two- and
higher dimensional cases there are three implications whose status is unknown.

3 The Inverse Automaton

There are natural algorithmic questions that arise. How does one determine if a
given CA is reversible ? If the CA is reversible how does one find its inverse ? How
large can the neighborhood of the inverse automaton be ? In the one-dimensional
case S.Amoroso and Y.Patt gave already in 1972 algorithms to test whether a
given CA is reversible or surjective [1]:

Theorem 4 ([1]). There exist algorithms to determine if a given one-dimen-
sional cellular automaton is injective or surjective.

Elegant decision algorithms based on de Bruijn graphs were later designed
by K. Sutner [22]. In higher dimensional spaces the questions are however much
harder. It was shown in [10] that the questions are then undecidable (see also [8]):

Theorem 5 ([10]). There are no algorithms to determine if a given two-dimen-
sional cellular automaton is injective or surjective.

Even though Corollary 1 guarantees that in bijective CA every cell can deter-
mine its previous state based on the current states in some fixed neighborhood
of the cell, Theorem 5 implies that this neighborhood may be very large. There
can be no computable upper bound on the radius of the neighborhood, because
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otherwise we could test all candidate inverses one-by-one. Let us say that a
CA has radius r if all elements of its neighborhood vector N belong to the set
{−r, . . . , r}d.

Corollary 3. For every computable function h : N −→ N there exists a two-
dimensional CA of radius one whose inverse function is not computed by any
CA of radius h(s), where s is the number of states.

In contrast, in the one-dimensional space the inverse automaton can only have
a relatively small neighborhood. Consider a one-dimensional CA with s states
and the two element neighborhood vector (0, 1). It is fairly easy to establish
a qudratic O(s2) upper bound on the neighborhood radius of the inverse CA.
Recently we improved this bound and showed that the inverse neighborhood
consists of at most s−1 consecutive cells [3]. This bound is tight since examples
are known that require precisely s− 1 elements in the inverse neighborhood [9].

Theorem 6 ([3, 9]). A one-dimensional RCA with s states and neighborhood
(0, 1) has an inverse whose neighborhood consists of at most s − 1 consecutive
positions. This bound is tight.

If the neighborhood in the forward direction is contained in m rather than
two consecutive positions then a similar argument shows that the inverse neigh-
borhood is contained in sm−1 − 1 consecutive positions [3]

4 Computational Universality

Another natural line of investigation is to study the computational power of
RCA. It is clear that any Turing machine can be simulated by a one-dimensional
CA. In 1977 T.Toffoli demonstrated how any d-dimensional CA can be simulated
by a d + 1-dimensional RCA [23]. As a corollary we obtain a two-dimensional
universal RCA.

The result was improved in [17] where it was shown that reversible Turing ma-
chines can be simulated by one-dimensional reversible CA. This establishes the
existence of universal one-dimensional reversible CA, since reversible Turing ma-
chines can be computationally universal [2]. A direct reversible one-dimensional
simulation of an arbitrary one-dimensional CA (with finite configurations) was
presented in [18].

Theorem 7 ([17]). One-dimensional reversible cellular automata exist that are
computationally universal.

An elegant universal two-dimensional RCA was presented by N.Margolus in
1984 [15]. This Billiard Ball RCA introduced the concept of space partitioning
as a tool to enforce reversibility. In this technique the update is done in two
steps (see Figure 3): In the first step the plane is partitioned into 2 × 2 blocks
along, say, odd coordinates. A permutation π1 of S4 is applied inside each block,
where S is the state set. In the second step the partitioning is shifted so that
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Fig. 3. The Margolus neighborhood. Odd updates use the solid partitioning, even up-
dates the dashed partitioning

the plane is partitioned along even coordinates, and another permutation π2 of
S4 is applied. This technique became known as the Margolus neighborhood.

In the billiard ball computer we have π1 = π2. The state set is binary, and
we denote the states as white and black. The permutations π1 and π2 only make
the following exchanges:

All other 2 × 2 blocks are unchanged. Because of the alternating partitioning,
a single black state propagates on the plane in one of the four diagonal direc-
tions that depends on the parity of its location. With such a simple update rule
it is possible to simulate the motion and collisions of billiard balls of positive
diameter. Walls from which the balls bounce can also be created, and all these
constructs can be combined to perform arbitrary computation [15].

A CA that uses the Margolus neighborhood is trivially reversible – the inverse
automaton applies the inverse permutations. Also other physical constraints can
be easily programmed into a CA that uses such a neighborhood. For example,
the number of black cells is automatically preserved if the permutations are such
that they conserve black states.

Strictly speaking Margolus neighborhood is not a CA neighborhood in the
sense of our definitions. The local update rule is different for even and odd cells.
But if we consider “supercells” that consist of 2 × 2 blocks then all cells are
identical. Also time steps become identical if we combine the even and odd clock
cycles into one update step. In this strict sense the billiard ball computer by
Margolus has 24 = 16 states and neighborhood radius one.

5 Local Invertibility

In view of our motivation in physics and computation – namely implementing
reversible massively parallel computers using some reversible physical systems
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– reversibility of the global transition function G does not seem like the most
relevant property to study. Even though G : C −→ C is one-to-one on infinite
configurations, the local rule f that produces G is not one-to-one. Function f
is then useless if we want to implement G using finite, reversible logic gates.
Rather, we prefer local rules that, unlike f , are themselves reversible, such as
the permutations in the Margolus neighborhood. In [25] the natural question
was asked whether all reversible cellular automata can be implemented using
reversible local update rules. This question was answered affirmatively in [11]
for one- and two-dimensional cellular automata. In higher dimensional spaces
the question remains open, although in [5] it was shown how to simulate any
RCA of any dimension by a locally reversible RCA.

For simplicity we only consider the one-dimensional case here. Let G be a
one-dimensional RCA whose neighborhood is within {−l, . . . , r} and suppose the
inverse G−1 has neighborhood within {−l′, . . . , r′}. Take an arbitrary configura-
tion c, write G(c) under c, and extract the state contents of the cells within the
stair-like shape shown in Figure 4. We obtain some element of Sm where S is the
state set and m is the number of cells within the shape. We repeat this for all
configurations c ∈ SZ. Let L ⊆ Sm be the set of “left stairs” we can extract this
way. Note that typically L �= Sm because the states we extract from c restrict
G(c) and vice versa. For example, if G = id is the identity function then the
extractions from c and G(c) in the middle part of the stair must be identical.

G(c)

c

l r’max{r, l’}

Fig. 4. Extraction of left stairs

The dimensions of the stair shape are chosen large enough to prevent the
influence of the states on either side of the stair to the other side. We repeat
the analogous process to obtain the set R of “right stairs”, as illustrated in
Figure 5. Let us denote by λ and ρ the total widths of the left and the right
stairs, respectively, that is

λ = l + max{r, l′}+ r′, and
ρ = l′ + max{r′, l}+ r.

We are interested in the cardinalities of sets L and R. For example, if G = id
then |L| = sλ and |R| = sρ where s = |S| is the number of states. If G is the
shift to the left then |L| = sλ+1 and |R| = sρ−1. It was shown in [11] that always
|L| · |R| = sλ+ρ. Let us associate with G the number

ϕ(G) =
|L|
sλ

.
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G(c)

c

rl’ max{r’, l}

Fig. 5. Extraction of right stairs

Function ϕ has the interesting property that it is a group homomorphism from
the group of RCA functions with state set S into the multiplicative group of
rational numbers [11], i.e. we have that

ϕ(G ◦ F ) = ϕ(G)ϕ(F )

for any RCA G and F over the same state set.
Consider a one-dimensional RCA G that uses a generalized Margolus neigh-

borhood: the update consists of t steps: G = G1 ◦ G2 ◦ . . . ◦ Gt. Each step Gi

is a block permutation rule: it partitions the configuration space into blocks of
equal length ki and applies some permutation πi of Ski on each block. One can
easily see that ϕ(Gi) = 1, that is, each Gi belongs to the kernel ker(ϕ) of the
homomorphism ϕ. It follows then that also G ∈ ker(ϕ). This means that func-
tions that are outside the kernel – for example the shifts – cannot be expressed
as a composition of block permutation rules.

Conversely, if G is a one-dimensional RCA function that satisfies ϕ(G) = 1
then it is a composition G = G1 ◦G2 where both G1 and G2 are block permu-
tations that use blocks of length k1 = k2 = ρ + λ. The first block permutation
G1 computes in each block of configuration c two adjacent left/right stairs, and
stores these stairs at the left/right ends of the block, see Figure 6. The second
rule G2 takes right/left stairs and decodes them into blocks of G(c). We have
the following result:

Theorem 8 ([11]). A one-dimensional RCA G is a composition of block per-
mutation rules if and only if ϕ(G) = 1. In this case two block permutations with
block sizes λ + ρ suffice.

As block permutations are locally reversible, we conclude that all one-dimen-
sional RCA can be implemented using finite reversible logic gates. (Those RCA

G

G
1

2

G(c)

c

Fig. 6. Factoring RCA G into a sequence of two block permutations G1 and G2
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that are not in the kernel of ϕ can be combined with a shift or a shift-like
function before applying Theorem 8.) A more complex analysis shows that an
analogous result applies to two-dimensional RCA [11]. In this case two group
homomorphisms are found, corresponding to the two dimensions of the space,
and those RCA that are in the kernels of both homomorphisms can be factored
into a sequence of two-dimensional block permutation rules. Three block permu-
tations are sufficient in this case [12]. Factoring in higher dimensional spaces is
still open, but what is known is that in the d-dimensional space any RCA that
is a composition of some block permutations is a composition of at most d + 1
block permutations:

Theorem 9 ([12]). If G1, G2, . . . , Gt are d-dimensional block permutation rules
then there are d + 1 block permutation rules B1, B2, . . . , Bd+1 such that

G1 ◦G2 ◦ . . . ◦Gt = B1 ◦B2 ◦ . . . ◦Bd+1.

6 Conclusion

We have briefly surveyed some developments in the theory of reversible cellular
automata. RCA are interesting mathematical objects to study. In the future,
they potentially play a role in the design of energy efficient massively parallel
computers. Applications in data coding (e.g. cryptography and compression) are
also possible. Interesting developments not covered in this survey include many
results on reversible and surjective CA whose local update rule is additive or has
some other algebraic structure [7, 13, 14, 21].
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My ostensible purpose in this talk is to describe some new results (found in col-
laboration with Amitabha Roy) on expressibility of regular languages in certain
generalizations of first-order logic. [10]. This provides me with a good excuse for
describing some the work on the algebraic theory of regular languages in what
one might call “nonregular settings”.

The syntactic monoid and syntactic morphism of a regular language provide a
highly effective tool for proving that a given regular language is not expressible or
recognizable in certain compuational models, as long as the model is guaranteed
to produce only regular languages. This includes finite automata, of course. but
also formulas of propositional temporal logic, and first-order logic, provided one
is careful to restrict the expressive power of such logics. (For example, by only
allowing the order relation in first-order formulas.)

Things become much harder, and quite a bit more interesting, when we drop
this kind of restriction on the model. The questions that arise are important
(particularly in computational complexity), and most of them are unsolved. They
all point to a rich theory that extends the reach of algebraic methods beyond
the domain of finite automata

1 Uniformizing Nonuniform Automata
with Ramsey’s Theorem

Let’s start with an especially trivial application of the syntactic monoid: Let
Σ = {0, 1}, and consider the two languages

L1 = {w ∈ Σ∗ : |w| ≡ 0 (mod 2)}

and
L2 = {w ∈ Σ∗ : |w|1 ≡ 0 (mod 2)}.

(We denote by |w|1 the number of 1’s that in the string w.)
These two languages have the same syntactic monoid, namely the group of

two elements. It follows immediately that neither can be recognized by a finite
automaton whose transition monoid is aperiodic (i.e., contains no nontrivial
groups). Put another way, if φ : Σ∗ → M is a homomorphism onto a finite
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aperiodic monoid, then there is no X ⊆M such that φ−1(X) = L1, or φ−1(X) =
L2.

Suppose that instead of a homomorphism, we consider a map

ψ : Σ × Z+ →M,

and extend it to Ψ : Σ∗ →M by mapping

w = σ1 · · ·σn

to
Ψ(w) = ψ(σ1, 1)ψ(σ2, 2) · · ·ψ(σn, n).

You can think of this as a kind of “nonuniform automaton”, in which the state
transition induced by a letter depends on the position of the letter within the
input string. This obviously increases the computational power of the model; the
languages recognized need not even be recursively enumerable! Can we recognize
L1 with such a setup? Can we recognize L2?

The answer to the first question is “yes”: Let M be the aperiodic monoid
{1, a, b} with multiplication defined by Ma = a, Mb = b. Set ψ(σ, i) = b when-
ever i is odd, and ψ(σ, i) = a when i is even. Then L1 = Ψ−1(a).

But L2 cannot be recognized. Let us suppose that we have some aperiodic
monoid M and map Ψ that does recognize L2. We will show that in spite of the
unruliness of Ψ, we can tame it so that it behaves like a homomorphism on a
large set of inputs: Since M is aperiodic, it satisfies some identity of the form
xn = xn+1 for some n. Let 0 ≤ i < j, and let us color the segment (i, j) by the
pair

(ψ(0, i)ψ(0, i + 1) · · ·ψ(0, j − 1), ψ(1, i)ψ(0, i + 1) · · ·ψ(0, j − 1)).

Ramsey’s Theorem guarantees the existence of a sequence

i1 < i2 < · · · < i2n+2

such that each (ij, ij+1) is has the same color (m0,m1). Consider a string w1 ∈
Σ∗ of length i2n+2 − 1 that has 1’s in positions i1, . . . , in+1, and 0’s elsewhere.
Then

Ψ(w1) = Ψ(0i1−1)mn+1
1 mn

0 .

Let us change the last 1 in w1 to 0, giving a new string w2. We now have

Ψ(w2) = Ψ(0i1−1)mn
1m

n+1
0 = Ψ(0i1−1)mn+1

1 mn
0 = Ψ(w1),

but the numbers of 1’s in the two strings differ by 1. So Ψ cannot recognize L2.
We get the same conclusion if we allow M to contain nontrivial groups of odd

order. We get a similar conclusion if we replace L2 by the set of strings in which
the number of 1’s is divisible by q > 1: This language cannot be recognized by
a map ψ × Z+ →M if every group in M has cardinality relatively prime to q.
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2 Programs over Finite Monoids

The results of the last section are due to Barrington and Straubing [5]. The
“nonuniform automata” we considered are special cases of programs over finite
monoids. These are defined as follows: With each integer n > 0 we associate a
sequence of instructions

(ψ1,n, i1), . . . , (ψrn,n, irn),

where each ij ∈ {1, . . . , n} and each ψj,n is a map from Σ into M. The value of
the program Ψ on

w = σ1 · · ·σn ∈ Σn

is

Ψ(w) =
rn∏

j=1

ψj,n(σij ) ∈M

In other words, the program scans the input word in some haphazard order,
possibly revisiting the same input letter many times. At each input letter, the
program emits an element of M, which depends on both the letter itself and the
instruction. The product of these elements determines whether w is accepted or
not. We call the function n �→ rn the length of the program.

The nonuniform automata of the preceding section are programs that make
a single scan over their input strings. In fact, [5] establishes a stronger result:

Theorem 1. Let q > 0, and let L ⊂ {0, 1}∗ be the set of strings in which the
number of 1’s is divisible by q. Let M be a finite monoid in which every group
has cardinality relatively prime to q. Then any program over M recognizing L
has length Ω(n log logn).

If we allow the program length to be polynomial in the input length, however,
we get the following remarkable result, due to Barrington [1]

Theorem 2. If M is a finite monoid that contains a nonsolvable group,then
every regular language is recognized by some polynomial-length program over M.

This implies, for example, that Theorem 1 cannot be extended to polynomial-
length programs, since the set of strings in which the number of 1’s is divisible by
7 is recognized by the alternating group A5, whose order is 60. In fact, Barrington
showed that every language in the circuit complexity class NC1 is recognized by
a polynomial-length program over A5. (Any other nonsolvable group will do.) It
is this connection with circuit complexity that motivates the interest in programs
over monoids.

3 Programs, Logic and Circuits

Let’s take a look again at Theorem 2 and ask what happens when M contains
only solvable groups. Such monoids are called solvable monoids. If the program
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into M is an ordinary homomorphism, then the language L recognized by the
program is recognized by M in the ordinary sense; in particular, the syntactic
monoid M(L) of L is solvable. Straubing, Thérien and Thomas [13] give a char-
acterization in generalized first-order logic of the regular languages recognized
by finite solvable monoids: Consider the logic in which variables represent po-
sitions in a string over Σ, and which there are the following relation symbols:
x < y, which is interpreted to mean that position x is to the left of positon y,
and Qσx, where σ ∈ Σ, which is interpreted to mean that the letter in position
x is σ. In addition to the usual boolean operations and ordinary quantification,
we allow modular quantifiers ∃r mod q, where ∃r mod qxφ is interpreted to mean
“the number of positions x satisfying φ is congruent to r modulo q.

A sentence in this logic accordingly defines a language over Σ. For instance,
the formula φ(x) given by

∃y(x < y ∧ ¬∃z(x < z ∧ z < y) ∧Qσx ∧Qσy)

says “position x and its successor both contain the letter σ”, and thus the sen-
tence

∃0 mod 2xφ(x)

defines the set of strings in which σσ occurs an even number of times as a factor.
In [13] it is proved that the family of languages defined in this way is precisely
the family of regular languages over Σ recognized by finite monoids in which
every group is solvable.

Suppose now that instead of a homomorphism, we have a polynomial-length
program over M. On an input of length n, the program emits a sequence

m1,m2, . . . ,mnk

of elements of M. We can view this sequence as an element w′ of M∗, where we
treat M as a finite alphabet. We then have w ∈ L if and only if w′ ∈ L′, where
L′ is the set of strings in M∗ that multiply to a value in X.

Of course, L′ is a regular language recognized by M, so by the theorem just
cited, L′ is defined by a sentence φ′ using both modular and ordinary quantifiers,
and in which the only numerical predicate is < .

In [2] it is shown how we can rewrite this sentence to obtain a defining sen-
tence φ for L The essential idea is that each position in the w′ can be encoded by
a k-tuple of positions in w, and thus each variable in φ′ is replaced by a k-tuple
of variables in φ. However, in constructing the sentence for L, we are obliged to
introduce new numerical predicates that encode the nonuniform behavior of the
k-program Ψ. This is no surprise: since k-programs over M can recognize uncom-
putable languages, so we would necessarily introduce uncomputable numerical
predicates in the defining sentences.

Thus every language recognized by a polynomial-length program over a solv-
able monoid is definable by sentence with modular quantifiers (with no restriction
on the kinds of numerical predicates introduced into the sentence).

Conversely, every language defined by such a sentence is recognized by a
polynomial-length program over a finite solvable monoid. Thus we have:
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Theorem 3. L ⊆ Σ∗ is defined by a sentence using modular and ordinary quan-
tifiers if and only if L is recognized by a polynomial-length program over a finite
solvable monoid.

Moreover, these are exactly the languages recognized by a special kind of
boolean circuit: polynomial-size, constant-depth families of circuits with un-
bounded fan-in gates to compute AND, OR, and MODq, for a modulus q > 1
fixed throughout the family. In computational complexity theory, this class of
languages is called ACC. The connection between ACC and programs over solv-
able monoids was discovered by Barrington and Thérien [6]. We will not discuss
circuits further here, but instead concentrate on the representations of ACC in
terms of programs and logic.

4 The Main Question

As we’ve seen, when we do not restrict the numerical predicates that occur in
our quantified formulas, we obtain languages that have arbitrarily high com-
putational complexity, in the sense that they may be uncomputable, but have
tightly bounded computational complexity in quite a different sense, since they
are recognized by small circuits. However, the true computational power of such
circuits is an open question, since we do not even know how to show that ACC
does not contain NP -complete languages.

But what if a language L defined by such a sentence is known to be regu-
lar? Let us first consider the case of a regular language defined by a first-order
sentence, without the use of modular quantifiers. The example given in the first
section shows that the syntactic monoid of such a language might contain a
group. Indeed, the sentence

∀x(∀y(y ≤ x) → (x mod 2 = 0))

defines the set of strings of even length. Let us suppose, however, that the input
alphabet Σ contains a neutral letter for L – that is, we suppose there exists
σ ∈ Σ such that σ is mapped to the identity element of the syntactic monoid
of L. This rules out such examples as the set of strings of even length. We can
then show

Theorem 4. Let L ⊆ Σ∗ be a regular language such that Σ contains a neutral
letter for L. If L is defined by a first-order sentence, then M(L) is aperiodic.

This theorem is due to Barrington, et. al. [2]. The proof, however, requires
the solution of a difficult problem in circuit complexity. (The separation of AC0

from NC1, see Furst, Saxe and Sipser [7].)
We do not know how to show that there is any regular language not definable

by a sentence with modular quantifiers. But it has long been conjectures that
nonsolvability is necessary for the behavior observed in Theorem 2.

Conjecture 1. Let L ⊆ Σ∗ be a regular language defined by a sentence that inl-
cudes both modular and ordinary quantifiers. Suppose that Σ contains a neutral
letter for L. Then every group in M(L) is solvable.
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This conjecture is equivalent to the assertion that the circuit complexity class
ACC is properly contained in the class NC1, a long-unsolved problem in com-
putational complexity. (The neutral letter hypothesis is not, strictly speaking,
necessary, since if the conjecture is true in the above form it remains true without
the hypothesis.)

There is, as well, a purely modular form of the conjecture:

Conjecture 2. Let L ⊆ Σ∗ be a regular language defined by a sentence that
inlcudes only modular quantifiers. Suppose that Σ contains a neutral letter for
L. Then M(L) is a solvable group..

How might we approach such a question? The arguments in Section 1 show
that for languages defined by single-scan programs, we can use Ramsey’s The-
orem to smooth out the non-uniformity in the program and make it look like a
homomorphism. Can we apply the same ideas to logical formulas? Perhaps we
can prove the conjectures for special classes of formulas.

If the only numerical predicate occurring in our formulas is the order relation,
then Conjectures 1 and 2 hold because of the results, already cited, in [13]. But
this is what we have been calling a regular setting: Formulas such as these cannot
define nonregular languages. The simplest example of a nonregular setting is
provided by formulas in which, in addition to the ordering relation, there are
monadic numerical predicates (predicates with a single argument). The following
is from Straubing [11]:

Theorem 5. Conjectures 1 and 2 hold for formulas in which every numerical
predicate is the order relation or a monadic relation.

This holds because such formulas give rise to single-scan programs with equiv-
alent behavior. More general formulas give rise to programs whose length is nk

for k > 1, and uniformizing these is considerably more difficult.

5 Presburger Arithmetic and Active-Domain Sentences

Presburger Arithmetic is the first-order theory of the natural numbers with ad-
dition. In other words, a formula in this theory is just a first-order formula
(typically with free variables) with the single ternary predicate x = y + z. A
formula such as

∃y(x = y + y)

expresses the property “x is even”. Of course, we need quantification to express
such a property. Suppose though, that we add some new symbols to our logic:
Specifically, we allow constants 0 and 1, and atomic formulas t ≡m t′, where t
and t′ are terms, interpreted to mean t and t′ are congruent modulo m. We can
express “x is even” by the quantifier free formula

x ≡2 0.

Presburger [9] showed that every formula in the original logic is equivalent to a
quantifier-free formula, provided we add the constants 0 and 1, extend the set
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of relations to include ordering and all the formuals t ≡m t′. (Since these can all
be expressed in the original logic, we do not change the properties definable in
Presburger arithmetic by adjoining them.)

We can use the apparatus of Presburger arithmetic to define languages: Let
us add a single unary predicate symbol π. We interpret π(x) to mean “the bit
in position x is 1”. (In other words, π(x) has the same meaning as Q1x, but it
is important in this context that there is no Q0x.) A sentence in this logic can
be interpreted in a string of bits and accordingly defines a language in {0, 1}∗.
We also allow interpretation in infinite strings in {0, 1}∗0ω, that is, infinite bit
strings in which there are finitely many 1’s.

We say that a sentence in this logic is an active-domain sentence if every
quantifier occurs in the form

∃x(π(x) ∧ ψ).

In other words, we only allow quantification over positions that contain a 1.
The same techniques used to prove quantifier elimination in Presburger arith-

metic can be used to show that every sentence in this logic is equivalent to an
active-domain sentence, provided we extend the signature to include 0,1, order-
ing, and congruence modulo k. A proof is outlined in Libkin [8].

When we have modular quantifiers available as well, active-domain quantifi-
cation means that every modular quantifer occurs in the form

∃r mod qx(π(x) ∧ ψ).

Very recently, A. Roy and I [10] showed that the elimination of non-acitive-
domain quantifiers can be extended to formulas that contain modular as well as
ordinary quantifers:

Theorem 6. Let L ⊆ {0, 1}∗ or L ⊆ {0, 1}∗0ω. Suppose L is defined by a
sentence φ, with both modular and ordinary quantifiers and with relation symbols
+ and π. Then L is defined by an active-domain sentence φ′ with modular and
ordinary quantifers, constant symbols 0 and 1, and relation symbols +, < and
≡m . Moreover, the moduli of the modular quantifiers in φ′ all occur in φ.

6 Ramsey’s Theorem Again

We can talk about active-domain sentences with reference to arbitrary alphabets
Σ of input letters, not just the binary alphabet {0, 1}. We simply designate some
τ ∈ Σ to be the “inactive letter”, and require all quantifiers to occur in the
context

Qx(
∨
σ =τ

Qσx ∧ φ),

where Q is either an ordinary existential quantifier, or a modular quantifier.

Theorem 7. Conjectures 1 and 2 are true for languages defined by active-
domain sentences in which the neutral letter is inactive. Moreover, every such
language is itself regular and its syntactic monoid is a solvable monoid (in Con-
jecture 1) or a solvable group (in Conjecture 2).
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There is no restriction in the foregoing theorem on the numerical predicates
that can occur in the sentence. Combining this with Theorem 6, we obtain the
main result of [10]:

Theorem 8. Conjecture 1 is true for languages defined by sentences in which
the only numerical predicate symbol is +.

Let us sketch how Theorem 7 is proved. Once again, we can use Ramsey’s
theorem to uniformize a non-uniform computation. This time the uniformization
functions at the level of the formula, instead of the program. Following Libkin [8],
we were able to prove:

Theorem 9. Let L ⊆ Σ∗. Suppose L0ω is defined by an active-domain sentence
φ with both modular and ordinary quantifiers, and arbitrary numerical predicates.
Then there is an infinite subset Y of N, and a sentence ψ, with the following
properties: (a) The only numerical predicate in ψ is < . (b) ψ has both ordinary
and modular quantifiers, and the modulus of every modular quantifier in ψ also
occurs in φ. (c) ψ is an active-domain sentence. (d) If w ∈ Σ∗ and all the active
letters in w are in positions belonging to Y, then w ∈ L if and only if w satisfies
ψ.

In other words, nonuniform sentences (those with unrestricted numerical
predicates) behave exactly like highly uniform sentences (those in which the
only numerical predicate is <) when restricted to some large set of positions.
This is precisely analogous to the behavior we observed in Section 1.

Now let L ⊆ Σ∗ be a language with a neutral letter defined by an active-
domain sentence φ in which the neutral letter τ is inactive. Then L0ω is also
defined by φ, and thus there is an infinite subset Y of N and a sentence ψ as in
the theorem above. Let

Y = {y1 < y2 < · · ·}.

Let w = σ1 · · ·σn ∈ Σ∗, and consider the word w′ of length yn such that the
yth

i letter of w′ is σi, and all the other letters are equal to the neutral letter τ.
Then w ∈ L if and only if w′ ∈ L if and only if w′ satisfies ψ. But since ψ uses
only active-domain quantification and has only < for a numerical predicate, this
occurs if and only if w satisfies ψ. This means that L is regular and its syntactic
monoid contains only solvable groups.

7 Conclusions

Much of what we have described can be viewed as a generalization of the work
in Barrington, et. al. [4] on the “Crane Beach Conjecture” from the domain of
first-order formulas with + to formulas with modular quantifiers and +. The
outstanding challenge, of course, is to extend our non-expressibility results to
formulas with arbitrary numerical predicates.

There are, however, considerable technical obstacles to doing so. We might
try to approach the problem by first showing that Conjecture 1 holds when we
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adjoin the numerical predicate × (integer multiplication). (The resulting logic
is important from a computational standpoint, since it defines precisely the lan-
guages in a natural uniform version of ACC [3].) But in [4] it is shown that when
this is done, one can define languages with neutral letters that are not regular.
Together with Theorem 7 this implies, in particular, that one cannot eliminate
non-active-domain quantification from such a formula. Quantifier-elimination
techniques may still be useful, however – it would be enough to show the re-
duction to active-domain quantification under the assumption that the language
defined is regular. It may be necessary to begin with very simple formulas: In
Straubing [12] something of the kind is carried out for the modular analogue of
boolean combinations of Σ1 sentences. Once again, Ramsey theory is an essential
ingredient.

Results like Theorem 2 show that nonsolvable groups have special computa-
tional properties. What we have been trying to do is show that the nonsolvability
is essential – that monoids with only solvable groups have radically different com-
putation capabilities. Completing this program would extend the application of
finite semigroups in computation well beyond the domain of finite automata.
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Abstract. We present two different types of complexity lower bounds
for quantum uniform automata (finite automata) and nonuniform au-
tomata (OBDDs). We call them “metric” and “entropic” lower bounds
in according to proof technique used. We present explicit Boolean func-
tions that show that these lower bounds are tight enough.
We show that when considering “almost all Boolean functions” on n vari-
ables our entropic lower bounds gives exponential (2c(δ)(n−log n)) lower
bound for the width of quantum OBDDs depending on the error δ al-
lowed.
Next we consider “generalized measure-many” quantum automata. It
is appeared that for uniform and nonuniform automata (for space re-
stricted models) their measure-once and measure-many models have dif-
ferent computational power.

1 Introduction

We consider two types of quantum automata: uniform – quantum finite automata
and nonuniform – quantum oblivious read-once branching programs (or Ordered
Binary Decision Diagrams QOBDDs). Branching programs and their restriction
model – ordered read-once branching programs have proven useful in a variety of
domains, such as hardware verification, model checking, and other CAD applica-
tions (see for example the book by Wegener [19]). Moreover, branching programs
are a very natural model for comparing the power of quantum computation with
classical computation, both deterministic and randomized.

Oblivious branching programs (definitions see below) and in particular con-
stant width OBDDs are often called non-uniform deterministic finite automata
(NUDFAs). Constant width OBDDs are too restricted and are of minor interest
(they can compute only a very small part of Boolean functions). We consider
OBDDs without constant width restrictions. We call such OBDDs non-uniform
automata (NUAs).

Our paper is organized as follows. In the section “Measure-Once Quantum
Automata” we present formal definitions of automata models. Then we present

� The research supported in part by Russia Fund for Basic Research 03-01-00769

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 78–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Complexity of Quantum Uniform and Nonuniform Automata 79

two different types of complexity lower bounds for quantum uniform automata
(finite automata) and nonuniform automata (OBDDs). We call them “metric”
and “entropic” lower bounds in according to proof technique used. We present
explicit Boolean functions that show that these lower bounds are tight enough.

Next we show that when considering “almost all Boolean functions” on n
variables our entropic lower bounds gives exponential (2(1−(2+θ)H(δ))(n−log 3n))
lower bound for the width of quantum OBDDs depending on the error δ allowed.
Here H(δ) is Shannon entropy function and θ ∈ (0, 1).

In the section “Generalized Measure-Many Automata” we consider “gen-
eralized measure-many” quantum automata. It is appeared that for uniform
and nonuniform automata (for space restricted models) their measure-once and
measure-many models have different computational power.

2 Measure-Once Quantum Automata

Uniform Automata. We consider 1-way quantum finite automata (QFA) model
similar to [8]. 1-way measure-once quantum finite automaton (MO-QFA) is a
tuple

Q = 〈X, S, {U(x) : x ∈ X}, s0, F 〉.

Here X is a finite input alphabet with an end-marker symbol $, S is a finite
set of states (let d = |S|), {U(x) : x ∈ X} is a set of transition matrices (U(x)
is d-dimensional unitary matrix representing the transition of Q upon reading
symbol x), s0 ∈ S is a starting state, and F ⊆ S is the set of accepting states.

The quantum state of Q is a linear superposition of states and is represented
by a d-dimensional complex unit vector

|ψ〉 = z1|s1〉+ z2|s2〉+ . . . + zd|sd〉

where {|si〉} is the set orthonormal basis vectors corresponding to the states
of Q.

Computation of Q starts in superposition |s0〉. If in the current step of com-
putation a superposition of Q is |ψ〉 then after reading an input x ∈ X the new
superposition of Q will be |ψ′〉 = U(x)|ψ〉.

After reading the end-marker $ the computation of Q halts and |ψ〉 observed.
After that, the superposition of states of Q collapses to a state si ∈ S. This
observation gives si ∈ S with the probability |zi|2. If we get si ∈ F , the input
is accepted. If si ∈ S\F , the input is rejected. The probability of accepting the
input is

∑
si∈F |zi|2.

Acceptance Criteria and Complexity. Let δ ∈ (0, 1/2). We say that QFA Q
bounded-error (δ-error) accepts language L ⊆ X∗ if words from L are accepted
with probability at least 1−δ and words from X∗\L are rejected with probability
at least 1/2 + δ.

We denote dim(Q) the number d of states of the automaton Q.
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Nonuniform Automata. A branching program (BP) is a finite directed acyclic
graph which accepts some subset of {0, 1}n. Each node (except for the sink
nodes) is labeled with an integer 1 ≤ i ≤ n and has two outgoing arrows labeled
0 and 1. This pair of edges corresponds to querying the i’th bit xi of the input,
and making a transition along one outgoing edge or the other depending on the
value of xi. There is a single source node corresponding to the start state, and
a subset Accept of the sink nodes corresponding to accepting states. An input
x is accepted if and only if it induces a chain of transitions leading from source
to a node in Accept, and the set of such inputs is the language accepted by the
program. A BP is oblivious if the nodes can be partitioned into levels V1, . . . , V�

and a level V�+1 such that the nodes in V�+1 are the sink nodes, nodes in each
level Vj with j ≤ � have outgoing edges only to nodes in the next level Vj+1, and
all nodes in a given level Vj query the same bit xij of the input. Such a program
is said to have length �, and width d if each level has at most d nodes. A BP is
called read-once if, for each variable xi, each of the paths in BP contains at most
one node labeled by xi. An OBDD is read-once BP where on each computation
path the variables are tested according to the same order.

Computation on OBDD of width d (read-once restriction means that OBDD
has length n) can be viewed as n step computation presented by d state finite
automaton. A computation in a deterministic finite automaton is performed in
according to order x1, . . . , xn of inputs testing and transformations in each level
Vj determined by automaton transition function Δ : Vj × {0, 1} → Vj+1.

In a NUAs we allow variables to be queried in arbitrary order (fixed for a
particular OBDD), and allow different transformations Δj in each level Vj .

Recently, several models of quantum branching programs and OBDDs have
been proposed [3, 4, 7, 15, 18]. Here we consider leveled quantum OBDD
(QOBDD) model without constant width restriction defined according to [3].

A QOBDD P of width d for Boolean function f on n variables that tests its
n variables in order π = (π(1) . . . π(n)) is a triple

P = 〈T, |ψ0〉, F 〉
where T is a sequence (of the length n) of d-dimensional unitary transformations
of d-dimensional Hilbert space Hd:

T = (〈π(i), Ui(0), Ui(1)〉)n
i=1,

|ψ0〉 is the unitary vector of Hd (initial state of P ). F ⊆ {1, . . . , d} is the set of
accepting states.

Computation on P for an input σ = σ1 . . . σn ∈ {0, 1}n is defined as follows:

1. A computation of P starts from the state |ψ0〉. On the i-th step, 1 ≤ i ≤ n,
of computation P transforms state |ψ〉 to a state |ψ′〉 = Ui(σπ(i))|ψ〉.

2. After the n-th (last) step of quantum transformation P measures its resulting
state |ψ(σ)〉. Measurement is presented by a diagonal zero-one projection
matrix M where Mii = 1 if i ∈ F and Mii = 0 if i �∈ F . The probability
paccept(σ) of P accepting input σ is defined by

paccept(σ) = ||M |ψ(σ)〉||2.
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Acceptance Criteria and Complexity. Let δ ∈ (0, 1/2). We say that an QOBDD P
computes f with bounded error (with δ-error) if for all σ ∈ f−1(1) the probability
of P accepting σ is at least 1 − δ and for all σ ∈ f−1(0) the probability of P
accepting σ is at most δ. We call such QOBDD δ-error QOBDD and denote
it Pδ.

We denote width(P ) the dimension d of the Hilbert space Hd of program
P . For a Boolean function f we define its quantum width Qwidthδ(f) to be the
width of the best quantum OBDD that computes f with δ-error.

Notes

– According to our considerations we have the following evident relation on
the complexity of uniform and nonuniform automata. If finite automaton A
is presented in the OBDD setting then dim(A) = width(A).

– Notice that uniform measure-once quantum finite automata can recognize
only a proper subclass of regular languages (see for example [8] for more infor-
mation). For a nonuniform model this property modifies into the statement
that arbitrary Boolean function on n variables can be computed (exactly)
by quantum OBDD of width 2n [3].

2.1 Lower Bounds

In this section we consider two lower bounds for quantum automata complexity.
We call them “metric” and “entropic” lower bounds in according to proof tech-
nique used. Both lower bounds are valid for uniform and nonuniform models.
We present the “metric” lower bound for the uniform case and the “entropic” –
for the nonuniform case.

Metric Lower Bound. In [2] we proved the following two lower bounds for quan-
tum automata. We then applied this lower bound technique for QOBDDs [3].

1. Let L ⊆ Σ∗ be a language bounded-error accepted by MO-QFA Q. Let here
and below AL is a minimal finite deterministic automaton accepting L. Then
it holds that
dim(Q) = Ω

(
(log dim(AL))/(log log dim(AL))

)
.

2. If δ ∈ (0, 1/8] then we have more precise lower bound
dim(Q) ≥

(
log dim(AL)

)
/
(
log(1 + 1/γ)

)
where γ = γ(δ).

In [4] we generalize our second lower bound which is true for QOBDDs for
arbitrary δ ∈ (0, 1/2). Now we can state for quantum automata the similar lower
bound.

Theorem 1. Let ε ∈ (0, 1/2). Let L ⊆ Σ∗ be a language δ-error accepted by
MO-QFA Q. Then it holds that

dim(Q) ≥ log dim(AL)
2 log(1 + 1/ε)

, where ε = 1/2− δ.
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Proof Sketch. The proof uses essentially the same techniques as were used for
Theorem 3 of [17] and Proposition 6 of [13], which show that stochastic and
quantum finite state automata that accept with bounded probability can be
simulated by deterministic finite state automata and therefore accept regular
languages.

The idea is that if two state vectors are within a distance θ of each other,
where θ depends on δ, then if the same operators are applied to both they
must either both accept or both reject, and so are equivalent. Since only a finite
number of balls of radius θ/2 can fit into the state space we end up with a finite
number of states. ��

Entropic Lower Bound. The next lower bound uses the communication com-
plexity approach and its proof uses entropic technique.

We informally recall one-way communication protocols and communication
complexity (see for example [11]). Let f : {0, 1}n1 × {0, 1}n2 → {0, 1} be a
Boolean function. In a one-way communication protocol player Alice and Bob
receive x and y and compute f(x, y). Alice starts computation on her part of
input and sends a message (binary string) to Bob. Bob on getting the message
and his part of an input performs computation and produces a result. The com-
munication complexity of a protocol is the worst case number of bits exchanged.
The deterministic communication complexity D(f) of f is the complexity of an
optimal protocol for f .

In a quantum protocol both players have a private set of qubits. Some qubits
are initialized to the input before the protocol starts, the other qubits are in
state |0〉. Alice performs some unitary transformation on her qubits and then
sends some of the qubits (channel qubits) to Bob. Bob performs some unitary
transformation on channel qubits and his part of qubits. Then some qubits are
measured and the result is taken as the output.

In a (bounded error) quantum protocol the correct answer must be given
with a probability 1 − δ for some δ ∈ (0, 1/2). The (bounded error) quantum
complexity of a function is denoted Qδ(f).

The communication matrix of f is a matrix with CMf [x, y] = f(x, y). De-
note cs(CMf ) the smallest number of columns of CMf that are necessary to
distinguish all different rows of CMf (the cardinality of minimal control set for
communication matrix).

With the function f , we associate a 2n1 × 2n2 communication matrix CMf

whose (x, y)-th entry, CMf [x, y] is f(x, y). For V ⊆ {0, 1}n1 and W ⊆ {0, 1}n2

denote CMV,W the |V |× |W | submatrix of CMf formed by rows V and columns
W of CMf . DenoteMf a set of submatrices of CMf with pairwise different rows.
For matrix CMV,W ∈ Mf call set W a control set.

Theorem 2. For every function f : {0, 1}n1 × {0, 1}n2 → {0, 1}, every δ ∈
(0, 1/2), and every CMV,W ∈Mf ,

Qδ(f) ≥ log |V | − |W |H(δ).

where H(δ) = −δ log δ − (1− δ) log(1 − δ).
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Proof. The proof uses entropic approach and omitted. Such approach used in
several papers for classical randomized and quantum communication computa-
tions [1, 10, 11]. ��

Corollary 21 For every function f : {0, 1}n1 × {0, 1}n2 → {0, 1}, every δ ∈
(0, 1/2),

Qδ(f) ≥ D(f)− cs(CMf )H(δ).

Proof. Denote nrow(CMf ) the number of pairwise distinct rows of matrix CMf .
The one-way deterministic communication complexity D(f) of f is easily seen
to be �log(nrow(CMf ))� [20]. ��

Klauck’s lower bound (Theorem 3) is a corollary of Theorem 2. Recall that
for a Boolean function f : {0, 1}n1 × {0, 1}n2 → {0, 1}, a set W ⊆ {0, 1}n2 is
shattered, if for all R ⊆ W there is an υ such that f(υ, ω) = 1 ⇔ ω ∈ R for all
ω ∈W . The VC-dimension VC(f) of f is the maximal size of a shattered set.

Theorem 3 ([11]). For every Boolean function f : {0, 1}n1×{0, 1}n2 → {0, 1},
every δ ∈ (0, 1/2),

Qδ(f) = VC(f)(1 −H(δ)).

Proof. According to definition of VC(f) there exists matrix MV,W ∈Mf , where
W is shattered set with |W | = VC(f) and |V | = 2|W |. ��

Communication complexity approach establishes a lower bounds for different
computational models [9, 12] and in particular for OBDDs. This fact is explored
in numerous papers. We refer to the book [19] for more information. The idea
of such approach (which is folklore now) is that one can view on OBDD as a
specific one-way communication protocol. We display this approach for quantum
OBDDs in the following statement.

Property 1 Let δ ∈ (0, 1/2). Let QOBDD P computes f with δ-error. Let
π = (L,R) be a partition of inputs of f between Alice and Bob with L and R
defined according to an ordering τ of inputs of P . That is, P can read variables
from R only after reading variables from L and cannot read variables from L
after starting reading variables from R. Then

width(P ) ≥ 2Qπ
δ (f),

here (and below in the paper) Qπ
δ is communication complexity of function f in

respect to partition π of inputs.

Proof Sketch. Let L = {z1, . . . , zn1} and R = {y1, . . . , yn2}. Let program P tests
its variables in the order z1, . . . , zn1 , y1 . . . yn2 We view quantum OBDD P as
the following one-way quantum protocol. Alice having her part σ = σ1 . . . σn1

of input, simulates computations on σ in according to sequence T of unitary
transformations of P and gets state |ψ(σ)〉 ∈ C. She sends message |ψ(σ)〉 to
Bob. Bob, having his part γ = γ1 . . . γn2 of input and message |ψ(σ)〉, performs
computations in according to sequence T of unitary transformations of P . Then
Bob performs measurement in according to P and outputs result (accept or
reject). ��
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Uniform Automata. The example of language Lp presented in [6] shows that
the metric lower bound from Theorem 1 is tight for all δ ∈ (0, 1/2). For a
prime p language Lp over a single letter alphabet defined as follows: Lp = {u :
|u| is divisible by p}.

Theorem 4 ([6]). For any δ > 0, there is a MO-QFA with O(log p) states
recognizing Lp with probability 1− δ.

Clearly we have that any finite deterministic automaton for Lp needs at least
p states. In [6] it was shown that constant bounded error finite probabilistic
automata also need at least p number of states to recognize Lp.

Application of Entropic lower bound for quantum finite automata for explicit
regular language was presented in [11].

Nonuniform Automata. Application of metric lower bound for QOBDDs for
MODp function was presented in [3]. Our results [3] shows that metric lower
bound for MODp is tight enough. In [18] for indirect storage access function
ISAn on n + logn variables proved that any QOBDD δ-error computed ISAn

has size 2Ω(n/logn). Theorem 2 and Property 1 give the following lower bound.

Property 2 Qwidthδ(ISAn) ≥ 2(1−H(δ))n/logn.

Below we consider lower bound for complexity for almost all Boolean func-
tions. Denote by F(n) the set of all boolean functions f : {0, 1}n → {0, 1}. Let
E be some property of functions from F(n). Denote by FE(n) the subset of
functions from F(n) without property E. We say that almost all functions have
the property E if

| FE(n) | / | F(n) |→ 0, as n→∞.

Theorem 5. For almost all functions f : {0, 1}n → {0, 1}, for δ ∈ (0, 1/2)

Qwidthδ(f) ≥ 2(1−(2+θ)H(δ))(n−log 3n).

Proof Sketch. For an ordering τ of n variables testing for QOBDD let π = (L,R)
be a corresponding partition of the set of variables such that |R| = � log 3n�, be
a partition of n variables of function f .

Consider communication computation for f for the partition π of inputs.
Elementary counting proves that 1) DC(fn) = n for almost all functions f ; 2)
for an arbitrary θ ∈ (0, 1) it holds that n ≤ cs(CM) < (2 + θ)n for almost all
functions f . Now Theorem 2 gives that for almost all functions, for δ ∈ (0, 1/2)

Qπ
δ (f) ≥ (1 − (2 + θ)H(δ))(n − log 3n).

There are C
|R|
n different partitions π of the set of n variables determined by

different possible orderings τ of variables testings by QOBDDs. Further counting
together with the previous inequality and Property 1 proves that for almost all
functions f it holds that Qwidthδ(f) ≥ 2(1−(2+θ)H(δ))(n−log 3n). ��
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3 Generalized Measure-Many Automata

In this section we consider one-way generalized measure-many quantum uniform
finite automata gmQFA that allow measurements in each step of computation.
For quantum circuits such model has already been considered by Aharonov,
Kitaev and Nisan [5], who have proposed to describe the states and the com-
putations of such quantum circuits by mixed states and superoperators, resp.
In general such measure-many automaton is completely specified by represent-
ing the state of automaton as a density matrix and making the superoperators
instead of purely unitary operators (we do not do this here).

In each step gmQFA performs unitary transformation determined by the
result of a previous measurement. Let us give more details on the model. d-
dimensional gmQFA acts on the d-dimensional Hilbert space Hd. For Hd con-
sider a set O = {E1, . . . , Et} of mutually orthogonal subspaces such that H =
E1 ⊕ . . .⊕ Et.

Formally d-dimensional gmQFA is a 5-tuple Q = 〈X, S, U , |ψ(0)〉, F 〉,
where X is a finite input alphabet with an end-marker symbol $, S = {1, . . . , d}
is a finite set of basis states, U = {U(x) : x ∈ X} is a set of transitions of
automaton Q (transition U(x) acts unitary on each of subspaces E1, . . . , Et),
F ⊆ S is the set of accepting states of Q. Automaton Q starts its work from the
initial pure state |ψ(0)〉.

Every computational step of Q consists of two parts:

1. A computational measurement of current state |ψ〉 =
∑t

i=1 |ψi〉 (here |ψi〉 is
the projection of ψ into Ei) by O has the following consequences:
– One of the subspaces E1, . . . , Et, say Ei, is selected with the probability
pi = |||ψi〉||2.
– After the measurement, the configuration |ψ〉 ”collapses” into the (renor-
malized) configuration |αi〉 = |ψi〉

|||ψi〉|| . All information not in |ψi〉 is irre-
versibly lost.

2. Transformation: Let x be an input of the automaton on the current step.
If x ∈ X then Q applies transformation U(x) ∈ U to |αi〉. If x = $ then
automaton Q stops computation and applies a final measurement. The au-
tomaton accepts (rejects) an input word if s ∈ F (s �∈ F ).

Theorem 6. For arbitrary regular language L there exists a gmQFA Q that
recognizes L exactly.

Proof Sketch. The definition of gmQFA allows to simulate classical deterministic
finite automaton by using measurement in each step in respect to basis states
and then apply a transition determined by an input and a current state. ��

Theorem 7. Let L be a language bounded-error recognized by gmQFA Q. Then
L is a regular language.

Proof Sketch. The proof is straightforward. That is, we construct a probabilistic
automaton P that bounded error recognizes L. ��
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Discussion. It is known that measured once quantum automata can recognize
only a proper subclass of regular languages [13]. Theorem 6 shows that gen-
eralized measured many quantum automata is more powerful (they can recog-
nize arbitrary regular languages). Mention that the same effect is true for the
nonuniform model [18]. That is in [18] presented Boolean function NOn that
can be computed exactly by linear size generalized measured many QOBDD
(gmQOBDD), contrary NOn is exponentially hard for ordinary QOBDD.

Remind that in [3] it is shown that arbitrary Boolean function can be com-
puted by 2n width QOBDD exactly.
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Abstract. Let Σ be a finite alphabet. A set R of regular languages over
Σ is called rational if there exists a finite set E of regular languages over
Σ, such that R is a rational subset of the finitely generated semigroup
(S, ·) = 〈E〉 with E as the set of generators and language concatenation as
a product. We prove that for any rational set R and any regular language
R ⊆ Σ∗ it is decidable (1) whether R ∈ R or not, and (2) whether R is
finite or not.

1 Introduction

Let Σ be a finite alphabet and E = {E1, . . . Ek} be a set of regular languages over
Σ. Consider the free semigroup (S, ·) = 〈E〉 generated by the elements of E with
respect to language concatenation. Decidability of membership and finiteness
problem are one of the most natural questions. The membership problem may
be considered as a special form of language factorization: a regular language
R ⊆ Σ∗ belongs to the semigroup S = 〈E〉 if and only if there exists a sequence
i1, i2, . . . , in of integers such that 1 � ip � k (p = 1 . . . n) and

R = Ei1Ei2 . . . Ein (1)

This problem occurs in many practical situations. Let us consider one possible
application, namely, view-based query processing in semistructured databases [9].

A powerful mathematical model for semi-structured data, i.e. data with ir-
regular or partially unknown structure, is an edge-labeled directed graph [1].
Nodes of the graph correspond to objects in a subject area, and edges are re-
lations between objects. Complex relationships between objects are represented
in this model as paths in the database graph and the following problem typi-
cally arises: for given regular language R (query), find all the pairs (u, v) of the
graph nodes such that there exists at least one labeled path between u and v
in the graph and its labels comprise a word in R. Although this problem has
polynomial time complexity (one should check non-emptiness of the intersection
of some regular languages), the whole database graph may need to be searched,
which is inefficient.
� This research was supported in part by the grant No. 10002-251 of the RAS program
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One possible method toward increasing query processing efficiency is using
views [9]. Suppose that we know the results for the queries, corresponding to
regular languages E = {E1, . . . , Ek}. The question is, can this data be used dur-
ing evaluation of an arbitrary query R? Is it possible to represent the language
R in terms of Ei? Formally, this is the language substitution problem. The effi-
ciency of query processing (especially parallel processing) significantly depends
on query structure and the decomposition of the form (1) can be effectively
evaluated [3].

Rational sets are natural extension of semigroups of regular languages. Such
objects appear, for instance, in the described domain if we are given not only a set
of views, but also an additional application level constraints on admissible query
rewritings. Rational sets are also related to univariable language equations [15].
Consider, for example, linear equation R = EX , where R and E are given
regular languages and X is a variable. It is decidable whether this equation has
a solution but in general there are infinitely many regular solutions [13]. Rational
sets could be a suitable formalism for their characterization.

The membership problem for the finitely generated semigroup of regular
languages was shown decidable by K. Hashiguchi in [11]. More precisely, it
was shown that for any finite set E of regular languages over Σ, and subset
T ⊆ {·,∪,∗ } of operations it is decidable whether or not the language R may be
constructed from Ei using a finite number of operations from T . The solution
in [11] is based on reduction to the limitedness property of distance automata [10]
(described in the next section). The latter problem is highly related to finite sec-
tion problem of finitely generated semigroup of square matrices over the tropical
semiring (see [19, 23] for a survey). The decidability of the finite section prob-
lem for matrices over the semiring of regular languages over unary alphabet was
proved in [18]. To our best knowledge, this is the only known result related to
the membership problem for rational sets.

As a related work we mention the classical results, such as Krohn-Rhodes
decomposition theorem for transformation semigroups [4], or language factoriza-
tion into a finite number of stars and primes [7], and very recently proved finite
language substitution problem [5, 14]. These works, however, deal with “unre-
stricted” case of the problem, when factors are arbitrary languages of certain
classes (i.e. stars and primes or finite languages).

The structure of the paper is as follows. In section 2 we present definitions
and briefly describe useful results on distance automata. In section 3 decidability
of the membership problem for rational sets of regular languages over arbitrary
alphabets is proved. The finiteness problem for finitely generated semigroup
and rational set of regular languages is considered in section 4. The conclusion
discusses the results and directions for future work.

2 Background and Definitions

An alphabet is a finite non-empty set of symbols. A finite sequence of symbols
from an alphabet Σ is called a word in Σ. The empty word is denoted by ε. Any
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set of words is called a language in Σ. Σ∗ denotes the set of all words (including
the empty word) in a given alphabet, Σ+ denotes the set of all non-empty words
in Σ, ∅ is an empty language (containing no words), and 2Σ∗

is the set of all
languages in Σ.

The union of languages L1 and L2 is the language L1 + L2 = {w ∈ Σ∗ | w ∈
L1 ∨ w ∈ L2}. The language L1L2 = {w ∈ Σ∗ | ∃w1 ∈ L1, w2 ∈ L2 : w = w1w2}
is called a concatenation of L1 and L2. Lk = LLk−1 is L to the power k. By
definition, L to the power zero is the empty word: L0 = {ε}. The Kleene closure
(or star) of L is the language L∗ = ∪∞

k=0L
k. A language is regular if it can be

obtained from letters of the alphabet, empty language, and {ε} using a finite
number of operations of concatenation, union and closure.

A semigroup is a set S equipped with associative binary product. A semigroup
is called finitely generated if there exists a finite set G ⊆ S of generators, such
that any element of S is a finite product of elements of G. Let Σ be an alphabet
and E = 〈E1, . . . Ek〉 be a set of regular languages in Σ. The concatenation of
regular languages is regular and we write (S, ·) = 〈E〉 for a finitely generated
semigroup, generated by E with concatenation as a semigroup product.

Let Δ be an alphabet and (S, ·) be a semigroup. A morphism ϕ : Δ+ → S
is any function satisfying ϕ(uv) = ϕ(u)ϕ(v) for all u, v ∈ Δ+. The morphism
ϕ : Δ+ → 2Σ∗

is called a regular language substitution if ϕ(δ) is a regular
language over Σ for all δ ∈ Δ. Sometimes it is more convenient to consider ϕ
as a morphism between free monoids Δ∗ and S1, so we extend ϕ by ϕ(ε) = {ε}.
For regular language L ⊆ Δ+ by ϕ(L) we mean the language ϕ(L) =

⋃
w∈L

ϕ(w).

With every semigroup (S, ·) = 〈E1, . . . , Ek〉 of regular languages we can as-
sociate a language substitution ϕ. In this paper we will use specific morphisms,
that are natural extensions of isomorphisms between Δ and the set of generators
of a finitely generated semigroup.

Definition 2.1. Let Δ be a finite alphabet and S = 〈G〉 be a finitely generated
semigroup. A choice of generators for S is a morphism ϕ : Δ+ → S, such that
〈ϕ(Δ)〉 = S and ϕ(δ1) = ϕ(δ2) if and only if δ1 = δ2.

Conversely, every regular language substitution ϕ : Δ+ → 2Σ∗
generates the

semigroup Sϕ = 〈{ϕ(δ) | δ ∈ Δ)}〉.
Definition 2.2 (Rational set). A set R of regular languages over Σ is called
rational if there exists a finite alphabet Δ, a regular language K ⊆ Δ+, and a
regular language substitution ϕ : Δ+ → 2Σ∗

, such that

R = {ϕ(w) | w ∈ K}.

Thus, rational sets of regular languages are rational subsets of finitely gen-
erated semigroups of regular languages. We shall say that the pair (K,ϕ) is a
representation of a rational set and write R = (K,ϕ).

Definition 2.3. Let ϕ : Δ+ → 2Σ∗
be a regular language substitution. The

maximal rewriting of a regular language R ⊆ Σ∗ with respect to ϕ is the set

Mϕ(R) = {w ∈ Δ+ | ϕ(w) ⊆ R}.
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Any subset of Mϕ(R) is called a rewriting of R. The rewriting M of R ⊆ Σ∗ is
called exact if ϕ(M) = R.

Theorem 2.1 (Calvanese et al. [8]). Let ϕ : Δ+ → 2Σ∗
be a regular language

substitution. For any regular language R ⊆ Σ∗ the maximal rewriting Mϕ(R) is
a regular language over Δ.

A (non-deterministic) automaton is a tuple A = 〈Δ,Q, ρ, q◦, F 〉, where Q is a
finite set of states, Δ is an input alphabet, ρ ⊆ Q×Δ×Q is a set of transitions,
q◦ ∈ Q is the initial state and F ⊆ Q is a set of final states. A successful path π
in A is a sequence (q1, δ1, q2)(q2, δ2, q3) . . . (qm−1, δm, qm) of transitions such that
q1 = q◦ and qm ∈ F . We call the word δ1δ2 . . . δm the label of π. The language
L(A) of the automaton A is the set of all words w such that there exists a
successful path π labeled by w.

A distance automaton over an alphabet Δ is a tuple A = 〈Δ,Q, ρ, q◦, F, d〉
where 〈Δ,Q, ρ, q◦, F 〉 is an automaton and d : ρ→ {0, 1} is a distance function,
which can be extended to a function on words as follows. The distance d(π) of
a path π is the sum of the distances of all edges in π. The distance μ(w) of a
word w ∈ L(A) is the minimum of d(π) for all successful paths π labeled by w.

Definition 2.4. A distance automaton A is called limited if there exists a con-
stant M such that d(w) < M for all words w ∈ L(A).

Theorem 2.2 (Hashiguchi [10, 16]). For any distance automaton A it is
decidable whether A is limited or not.

3 Decidability of the Membership Problem

In this section we prove that the following

Theorem 3.1. For any rational set R = (K,ϕ) of regular languages over Σ
and any regular language R ⊆ Σ∗ is it decidable whether R ∈ R or not.

The proof is based on reduction to the limitedness problem for distance automata
and essentially is the same as the proof by K. Hashiguchi [11] for the membership
problem for finitely generated semigroup of regular languages.

Let us start with the following observation.

Proposition 3.1. Let R = (K,ϕ) be a rational set of regular languages and
ϕ : Δ+ → S be a regular language substitution. A regular language R ⊆ Σ∗ is in
R only if its rewriting M = Mϕ(R) ∩K is exact.

Let Mϕ(R)∩K be an exact rewriting of R. It is well known that any regular
language can be represented as finite union of union-free languages. (Recall, that
a regular language is called union-free if it can be obtained form the letters of
the alphabet and the empty word using only concatenation and iteration.) Let

Mϕ(R) ∩K =
n⋃

i=1

Mi, (2)
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be such representation. Clearly, R ∈ R only if ϕ(Mi) = R for some i. Hence the
original membership problem can be reformulated as follows.

Problem 3.1. Given a regular language R ⊆ Σ∗, a set of regular languages E =
{E1, . . . , Ek} over Σ, and a union-free regular language M ⊆ Δ∗ such that
ϕ(M) = R one should decide whether there exists a word w ∈ M such that
ϕ(w) = R.

Consider the following example.

Example 3.1. Let Σ = {a, b}, R = a∗ + a∗ba∗b(a+ b)∗ and ϕ(δ1) = a∗ + a∗b(a+
b)∗b, ϕ(δ2) = (bab)∗. The maximal rewriting of R wrt E is the language

Mϕ(R) = (δ1 + δ2)∗

The union-free decomposition of this language contains only one component:

M = (δ∗1δ
∗
2)∗

This language contains the word w = δ1δ2δ2δ1δ1, and one can verify that
ϕ(w) = R. ��

We shall say that a word v ∈ Δ+ is a shuffle extension of a word u ∈
Δ+, in notation u � v, if there exist α0, α1, . . . , α|u| ∈ Δ∗ such that v =
α0u1α1u2 . . . αn−1unαn and u = u1u2 . . . un.

Proposition 3.2. Let M be a union-free language over Δ. Then, for any pair
of words u, v ∈M there exists a word w ∈M such that w is a shuffle extension
of both u and v.

Proof. If M is finite, then it contains only one word and the statement is trivial.
Let M be an infinite language. Since M is union free it is either a star or a
concatenation of union-free languages. If M is a star, then for any words u, v ∈M
the concatenation w = uv is also in M .

Let M be a concatenation of union-free languages:

M = M1M2 . . .Mp,

where Mi (1 � i � p) is either a letter, or a star language. Every word x ∈ M
has a factorization of the form x = x1x2 . . . xp, where xi ∈ Mi for all i ∈ [1, p].
Let u = u1u2 . . . up and v = v1v2 . . . vp. Consider the word

w = ext(u1, v1)ext(u2, v2) . . . ext(up, vp),

where ext(ui, vi) = ui if Mi is a letter, and ext(ui, vi) = uivi if Mi is a star.
Clearly, w ∈ M because ext(ui, vi) ∈ Mi for all i ∈ [1, p] and this word is a
shuffle extension of u and v. ��

Corollary 3.1. For any finite subset F of a union-free language M there exists
a word w ∈M , such that w is a shuffle extension for every word in F .
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Fig. 1. Distance automaton construction for Example 3.1

The above proposition states that union-free languages has a grid structure
with respect to shuffle extension relation.

Lemma 3.1. Let M be a union-free language over Δ, and ϕ : Δ+ → 2Σ∗
be

a regular language substitution. If ε ∈ ϕ(δ) for all δ ∈ Δ, then the following
statements are equivalent:

1. there exists a word w ∈M such that ϕ(w) = ϕ(M)
2. there exists a constant C ∈ N such that

∀u ∈ ϕ(M) ∃w′ ∈M : |w′| < C, u ∈ ϕ(w′) (3)

Proof. It is evident that 2 follows from 1. We simply can choose C to be equal
to the length of w. Consider the inverse implication.

Condition (3) means that there exists a finite language F ⊆ M satisfying
ϕ(F ) = ϕ(M). Since M is union-free then, according to the Corollary 3.1, there
exists a word w ∈ M which is a shuffle extension of all the words in F . The
statement of the lemma follows from the fact that if ε ∈ ϕ(δ) for all δ ∈ Δ, then
u � w ⇒ ϕ(u) ⊆ ϕ(w). ��

Condition (3) of the above lemma can be checked by straightforward reduc-
tion to the limitedness property of a distance automaton. Let us illustrate this
reduction by Example 3.1 (see Fig. 1). Consider the standard procedure for con-
struction of Σ-automaton recognizing the language ϕ(M) = (ϕ(δ1)∗ϕ(δ2)∗)∗.
First, build up automata A1 and A2 recognizing E1 = ϕ(δ1) and E2 = ϕ(δ2),
respectively. On Fig. 3.1 these automata are shown by solid transitions. Then,
convert A1 to A′

1 by addition “loop transitions” connecting the final states of A1

with the successors of the initial state (shown by dashed transitions). We assign
0 to all the edges of A1,2, and 1 to all “loop” transitions. Now, connect the final
states of A′

1 with the successors of the initial state of A′
2 (long dashed). Thus,

we have the automaton recognizing E∗
1E

∗
2 . Finally, by adding “loop” transitions

(marked by 1 and shown as dotted transition) we get the desired automaton.
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For any union-free regular language L ⊆ Δ+ by AL we mean a distance Σ-
automaton constructed as described above from a union-free regular expression
for L.

Lemma 3.2. Let R = (K,ϕ) be a rational set of regular languages over Σ, R ⊆
Σ∗ be a regular language, and M1 +M2 + . . .+Mn be a union free decomposition
of the rewriting M = Mϕ(R) ∩K. If ε ∈ ϕ(δ) for all δ ∈ Δ, then R ∈ R if and
only if there exists i ∈ [1, n] such that

1. the rewriting Mi is exact, i.e. ϕ(Mi) = R, and
2. the distance Σ-automaton AMi is limited.

The following example illustrates that the limitedness of the automaton AM

itself is not sufficient if elements of E may not contain the empty word.

Example 3.2. Let Σ be an unary alphabet, say Σ = {a}. Consider the semigroup
generated by languages ϕ(δ1) = {ε}+{a2} and ϕ(δ2) = {a8+a64}+{a64+2i, i �
1}. Let R = {a2i, i � 4} and M = δ∗1δ2δ

∗
2 .

The distance Σ-automaton AM is limited by p = 6, because

R =
6⋃

i,j=0

ϕ(δi
1δ2δ

j
2),

but the shortest word w ∈ Δ∗ satisfying ϕ(w) = R is w = δ29
1 δ2. Note, that

|w| = 30 > 6 + 1 + 6 and we can not find the desired word by substituting p
instead of all star operations in the corresponding expression. ��

Proposition 3.3. Let M = M1S
∗
1M2S

∗
2 . . .MnS

∗
nMn+1 be a union-free lan-

guage over Δ, ϕ : Δ+ → 2Σ∗
be a regular language substitution, and R ⊆ Σ∗ be

a regular language. If ε /∈ ϕ(Si) for some i ∈ [1, n], then there exists a natural
number kmax such that for every word w ∈M satisfying ϕ(w) = R

w ∈M1S
∗
1 . . . S∗

i−1MiS
k
i Mi+1S

∗
i+1 . . .MnS

∗
nMn+1

for some k � kmax.

Proof. The length of the shortest word in ϕ(w) grows as we increase k, so kmax

is bounded by the length of the shortest word in R. ��

Summing up Lemma 3.2 and Proposition 3.3 we get Theorem 3.1. The out-
line of the resulting algorithm is the following. First, for a given rational set
R = (K,ϕ) and a regular language R we construct a union-free decomposition
of the rewriting Mϕ(R)∩K. If this decomposition contains no exact rewritings,
then R /∈ R. Otherwise, we apply Proposition 3.3 to each exact union-free rewrit-
ing and obtain a finite number of union-free languages satisfying conditions of
Lemma 3.1. Then, by Lemma 3.2, it is sufficient to check finiteness property of
corresponding distance automata.
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4 Finiteness of Semigroup and Rational Set

In this section we will consider the finiteness problem for rational set R = (K,ϕ)
of regular languages. This problem has two important specific cases. When K =
Δ+, the finiteness problem for R is equivalent to the finiteness problem of finitely
generated semigroup. If K = Δ+ and |Δ| = 1 then we have the finite power
property problem of regular language. Let us consider the latter problem more
closely because it plays a crucial role in the following proof.

A regular language L is said to have the finite power property if there exists
a natural number k ∈ N such that L∗ = Lk. In 1966 J. Brzozowski raised a
question whether this property is decidable for regular languages. The positive
answer was independently given by K. Hashiguchi [10] and I. Simon [22]. We
shall write fpp(L) = p or fpp(L) < ∞ if L∗ = Lp, and fpp(L) = ∞ if no such
number exists. The following characterizations of regular languages satisfying
finite power property are well known (c.f. [20]):

Proposition 4.1. Let L be a regular language. Then

1. if fpp(L) <∞, then either L is infinite and ε ∈ L, or L = {ε},
2. fpp(L) <∞ if and only if there exist k, n ∈ N, such that Lk = Lk+n+1,
3. fpp(L) = ∞ if and only if there exists w ∈ L∗, such that wn /∈ Ln for all

n ∈ N.

4.1 Finiteness of Free Semigroup

Consider the finiteness problem for the semigroup (S, ·) = 〈E〉. If |E| = 1 then
finiteness problem is equivalent to the finite power property, and thus decidable.
But what can we say if |E| > 1? As we know form semigroup theory [17], a
finitely generated semigroup S is finite if and only if there exists a positive
number m such that, for any sequence s1, . . . , sm of elements of S, there exist
integers j, k, 1 � j � k � m, such that s1 . . . sk = s1 . . . sj−1(sj . . . sk)2. This
condition, however, does not provide an upper bound for m and can not be used
as a decision procedure.

Proposition 4.2. Let (S, ·) = 〈E〉 be a finitely generated semigroup of regular
languages in Σ. The semigroup S is finite only if fpp(E) <∞ for all E ∈ E.

Proof. If fpp(E) = ∞ for some E ∈ E, then all the languages of the form Ek

k ∈ N are distinct and the semigroup is infinite. ��

This condition, however, is not sufficient if |E| > 1. For example, if E1 = a∗

and E2 = b∗, the semigroup is infinite because (a∗b∗)∗ = (a + b)∗, but for
any p ∈ N the language (a∗b∗)p consists of all words with at most p “letter
switches”. Moreover, it is known [6] that the semigroup given by presentation
S = 〈Δ | x3 = x2 for all x ∈ Δ∗〉 is infinite even if |Δ| = 2.

Existence of the empty word allows to prove the decidability of finiteness
problem. Let us setup some useful relations between finite power property and
concatenation operation.
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Proposition 4.3. Let E1, . . . , Ek be regular languages such that ε ∈ Ei for all
i ∈ [1, k]. For any permutation σ of natural numbers 1, 2, . . . , k

(Eσ1Eσ2 . . . Eσk
)∗ = (E1 + E2 + . . . + Ek)∗.

Proof. Clearly, (Eσ1Eσ2 . . . Eσk
)∗ ⊆ (E1 + E2 + . . . + Ek)∗ for any permutation

σ of natural numbers 1, 2, . . . , k. We have to prove the inverse inclusion.
Let w be a word in (E1 + E2 + . . . + Ek)∗. There exists p ∈ N such that

w ∈ (E1+E2+. . .+Ek)p, and the word w can be represented as w = w1w2 . . . wp,
where each wi belongs to Ej for some j. Note, that since ε ∈ Ei for all i ∈ [1, k]
then Ei ⊆ (Eσ1 . . . Eσk

). Thus, w ∈ (Eσ1Eσ2 . . . Eσk
)pk and (Eσ1Eσ2 . . . Eσk

)∗ ⊇
(E1 + E2 + . . . + Ek)∗. ��
Proposition 4.4. Let E1, . . . , Ek be regular languages, and σ be an arbitrary
permutation of natural numbers 1, 2, . . . , k. Then,

fpp(E1E2 . . . Ek) <∞⇒ fpp(Eσ1Eσ2 . . . Eσk
) <∞.

Proof. Consider the languages L = (Eσ1 . . . Eσk
)pk and L′ = (Eσ1 . . . Eσk

)pk+1.
Since fpp(E1E2 . . . Ek) = p <∞ the language E1E2 . . . Ek and all the languages
E1, . . . , Ek contain the empty word. The following inclusions hold:

(E1E2 . . . Ek)p ⊆ L ⊆ L′ ⊆ (E1 + . . . + Ek)∗

According to Proposition 4.3, (E1E2 . . . Ek)∗ = (E1 + . . . + Ek)p, so L = L′

and fpp(Eσ1Eσ2 . . . Eσk
) <∞ by Proposition 4.1. ��

Theorem 4.1. Let S = 〈E〉 be a finitely generated semigroup of regular lan-
guages over Σ and ϕ : Δ+ → S be a choice of generators for S. The semigroup
S is finite if and only if for any m-subset {δ1, . . . , δm} ⊆ Δ (m = 1, . . . , |Δ|)

fpp(ϕ(δ1δ2 . . . δm)) <∞.

Proof. Clearly, if fpp(ϕ(δ1δ2 . . . δm)) = ∞ for some {δ1, . . . , δm} ⊆ Δ, then the
semigroup S is infinite. We prove now, by induction on k – the cardinality of
Δ, that if the conditions of the theorem hold, then for every k there exists a
constant Ck ∈ N, such that for any word w ∈ Δ+ there exists a word w′ ∈ Δ+

that satisfy ϕ(w′) = ϕ(w) and |w′| � Ck.
Let k = 1. As we mentioned above, in this case we have finite power property

and the statement is correct.
Assume that the statement is correct for k = n − 1 and consider the case

k = n. Let fpp(ϕ(δ1δ2 . . . δn)) = p. According to Proposition 4.3 every word
w ∈ {δ1, . . . , δn}∗ may be presented as:

w = w11δ1w12δ2 . . . w1nδnw21δ1w22δ2 . . . w2nδn . . . . . . wpnδnw̃, (4)

where wij ∈ (Δ \ {δj})∗ for all i = 1, . . . , p and j = 1, . . . , n, and w̃ ∈ {δ1, . . . ,
δn}∗. According to inductive assumption for every word wij there exists a word
w′

ij , such that ϕ(w′
ij) = ϕ(wij) and |w′

ij | � Cn−1. Let us assume that |wij | �
Cn−1. It is follow from (4) that ϕ((δ1δ2 . . . δn)p) ⊆ ϕ(w), but ϕ((δ1δ2 . . . δn)p) ⊇
ϕ(w) by Proposition 4.3. Note, that if ε ∈ ϕ(δ) for all δ ∈ Δ, then ϕ(u) ⊆ ϕ(uv)
for all u, v ∈ Δ+. Thus, we can choose Cn to be equal to (Cn−1 + 1)p. ��
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The following example demonstrates that there exist non-commutative regu-
lar languages satisfying condition of the above theorem, i.e. there exist non-trivial
finite semigroups of regular languages.

Example 4.1. Let Σ = {a, b}, E1 = b∗a + (b∗ab∗ab∗)∗, and E2 = (b + ab∗a)∗.
The languages E1 and E2 satisfy the finite power property and do not commute
(E1E2 �= E2E1). One can verify that (E1E2)∗ = (E1E2)2.

4.2 Finiteness of a Rational Set

Finiteness of a rational set R = (K,ϕ) is harder to establish than finiteness of the
corresponding semigroup Sϕ, because not all possible products (concatenations)
of generators are allowed by K. For instance, let Σ be an unary alphabet, Σ =
{a}, and substitution ϕ is defined as ϕ(δ1) = (aaa)∗, ϕ(δ2) = (aa + ε), and
ϕ(δ3) = (aaaaa)∗. The semigroup Sϕ is, obviously, infinite, but the set R =
(K,ϕ), where K = δ1δ

∗
2δ3 is finite due to equality

ϕ(δ1)ϕ(δ2)2ϕ(δ3) = ϕ(δ1)ϕ(δ2)∗ϕ(δ3).

For the lack of simplicity assume that K is a union-free language of star
height one, hence,

K = K1S
∗
1K2S

∗
2 . . .KmS∗

mKm+1, (5)

where Ki ∈ Δ∗ and Si ∈ Δ+.

Proposition 4.5. Let R = (K,ϕ) be a rational set of regular languages in Σ,
where K has the form (5). If ε /∈ ϕ(Si) for some i ∈ [1,m] then R is infinite.

Proof. Similarly to Proposition 3.3 consider the length of the shortest word. ��

Define the mapping γ : (N∪{∗})m → 2Σ∗
by the rule v = (v1, v2, . . . , vm) �→

K1S
v1
1 . . .KmSvm

m Km+1. By d(v) denote the bound for distance function of dis-
tance Σ-automaton Aγ(v). If Aγ(v) is not limited, then define d(v) = ∞. For
any k-subset I = {i1, . . . , ik} ⊆ {1, . . . ,m} and any number p ∈ N by V(I, p)
denote the following subset of (N ∪ {∗})m:

V(I, p) = {v ∈ (N ∪ {∗})m : vi ∈ [0, p] if i ∈ I, and vi = ∗ if i /∈ I} (6)

Let D(I, p) = max{d(v) | v ∈ V(I, p)}. By p0 denote d((∗, . . . , ∗)). Consider
the sequence p0, . . . , pm of N ∪∞ elements, defined for any k ∈ [0,m− 1] as

pk+1 =
{

max{D(Ik+1, pk) | Ik+1 ⊆ {1, . . . ,m}, |Ik+1| = k + 1}, pk ∈ N
∞, pk = ∞.

(7)

Proposition 4.6. Let R = (K,ϕ) be a rational set of regular languages over Σ.
If ε ∈ ϕ(δ) for all δ ∈ Δ, then the set R is finite if and only if pm defined by (7)
is a natural number.

Proof. Similarly to the proof of Lemma 3.1. ��

Theorem 4.2. For any rational set R = (K,ϕ) of regular languages it is decid-
able whether R is finite or not.
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5 Conclusion

In this paper we extended the results by K.Hashiguchi [11] and proved that
membership and finiteness problems for rational sets of regular languages are
decidable. An obvious drawback of the solution proposed is its computational
complexity. Limitedness property of a distance automaton has exponential com-
plexity (wrt the number of states of the automaton) and exponential lower
bound for maximal rewriting construction was proved in [8]. Note, that even
for finite languages only exponential time complexity factorization algorithms
are known [21]. A possible solution is a reduction to the membership problem
over unary alphabet, which is simpler then the original problem [2]. Consider a
language morphism f : Σ → {a} and reduce the problem into a one-letter case,
when only lengths of words are taken into account. If corresponding problem for
one-letter alphabet has no solution then the original problem has no solution
either.

We conclude this paper with a discussion on some open problems. First of
all, are the equivalence and intersection problems for rational sets R1 = (K1, ϕ1)
and R2 = (K2, ϕ2) decidable? That is, is it decidable whether or not R1 = R2

and is the intersection R = R1∩R2 a rational set. The problem is, that even if R1

and R2 are equivalent, some of generators of R1, i.e. the languages ϕ(δ), δ ∈ Δ1,
may not be representable in terms of generators for R2, and vice verse.

Another problem is Δ- and K-minimality of a representation. We say that
a representation (K,ϕ) of a rational set R is K-minimal if (K ′, ϕ) ⊂ R for
any regular language K ′ ⊂ K. Similarly, we say that a representation (K,ϕ) is
Δ-minimal if R has no representation (K ′, ϕ′) in a smaller alphabet Δ′. Is it
decidable whether a given representation is Δ- or K-minimal, and is it possible
to compute Δ- or K-minimal representation for a given rational set?

It is worth noting that these problems are interesting from practical point of
view. For example, in a view-based query processing system, we are interested
in finding a set of views, i.e. E, that covers a given (finite) set Q of “the most
popular” queries, i.e. Q ⊆ S = 〈E〉. Clearly, we would like to maintain as little
views as possible, that leads to Δ-minimality problem for free semigroup.

Finally, it is interesting whether or not similar problems are decidable if
the concatenation is replaced by some other binary language operation, such as
synchronized insertion or shuffle. Linear language equations in this case remain
decidable [12] and one can expect that the so is the membership problem for the
finitely generated semigroup.
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Abstract. We consider tissue P systems with antiport rules and inves-
tigate their computational power when using only a (very) small number
of symbols and cells. Even when using only one symbol, any recursively
enumerable set of natural numbers can be generated with at most seven
cells. On the other hand, with only one cell we can only generate regu-
lar sets when using one channel with the environment, whereas one cell
with two channels between the cell and the environment obtains compu-
tational completeness with at most five symbols. Between these extreme
cases of one symbol and one cell, respectively, there seems to be a trade-
off between the number of cells and the number of symbols, e.g., for the
case of tissue P systems with two channels between a cell and the envi-
ronment we show that computational completeness can be obtained with
two cells and three symbols as well as with three cells and two symbols,
respectively.

Keywords: antiport rules, cells, membrane computing, tissue P systems

1 Introduction

Membrane systems with a hierarchical (tree-like) structure (P systems) were
introduced in the original paper of Gheorghe Păun (see [11]) with the rules being
applied in a maximally parallel manner; tissue P systems with cells arranged in
an arbitrary graph structure (see [8]) allow only one rule to be applied in each
channel between two cells or a cell and the environment, but all channels work
together in a maximally parallel manner. We here consider tissue P systems
using symport/antiport rules (these communication rules first were investigated
in [10]) for the communication between two cells or a cell and the environment.
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It is well known that equipped with the maximally parallel derivation mode
P systems with only one membrane (one cell) already reach computational com-
pleteness, even with antiport rules of weight two (e.g., see [3], [5], [7]); the same
result also holds true for P systems with one cell and two channels (working in
opposite directions) between the cell and the environment, whereas with only
one channel between the environment and the single cell only regular sets of
natural numbers can be generated as will be proved in Section 5.

Considering the generation of recursively enumerable sets of natural numbers
we may also ask the question how many symbols we need for obtaining computa-
tional completeness, especially for small numbers of membranes (in P systems)
and cells (in tissue P systems), respectively. In [13], the quite surprising result
was proved that three symbols and four membranes are enough in the case of P
systems with symport/ antiport rules. The specific type of maximally parallel
application of at most one rule in each channel between two cells or a cell and the
environment, respectively, in tissue P systems allowed for an even more surpris-
ing result proved in [4]: The minimal number of one symbol is already sufficient
to obtain computational completeness, e.g., it was shown that any recursively
enumerable set of natural numbers can be generated by a tissue P system with at
most seven cells using symport / antiport rules of only one symbol. On the other
hand, for “classical” P systems using symport / antiport rules it was shown in
[1] that computational completeness can already be obtained in one membrane
by using only five symbols.

We here further investigate the power of tissue P systems with symport / an-
tiport rules as well as small numbers of symbols and cells. After some preliminary
definitions, we recall the definition of tissue P systems as they are considered in
this paper. We then first consider tissue P systems with only one symbol and
recall the completeness result from [4] in Section 3. Afterwards, in Section 4
we elaborate computational completeness results for tissue P systems with two
and three symbols, respectively. On the other hand, for tissue P systems with
only one cell, computational completeness cannot be achieved when using only
one channel with the environment, instead with at least two symbols we obtain
only regular sets as is shown in Section 5, whereas one cell with two channels
between the cell and the environment gains computational completeness with
at most five symbols (a similar result for P systems is established in [1]). In
Section 6 we finally give an overview about the results obtained in this paper.

2 Preliminaries

For the basic elements of formal language theory needed in the following, we refer
to [2] and [15]. We just list a few notions and notations: N denotes the set of
natural numbers (i.e., of non-negative integers). V ∗ is the free monoid generated
by the alphabet V under the operation of concatenation and the empty string,
denoted by λ, as unit element; by NRE, NREG, and NFIN we denote the
family of recursively enumerable sets, regular sets, and finite sets of natural
numbers, respectively.
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2.1 Register Machines

The proofs of the main results established in this paper are based on the simu-
lation of register machines; we refer to [9] for original definitions, and to [3] for
definitions like those we use in this paper:

A (non-deterministic) register machine is a construct M = (n,R, l0, lh) ,
where n is the number of registers, R is a finite set of instructions injectively
labelled with elements from a given set lab (M), l0 is the initial/start label, and
lh is the final label.

The instructions are of the following forms:

– l1 : (A (r) , l2, l3) – add 1 to the contents of register r and proceed to one
of the instructions (labelled with) l2 and l3. (We say that we have an ADD
instruction.)

– l1 : (S (r) , l2, l3) – if register r is not empty, then subtract 1 from its contents
and go to instruction l2, otherwise proceed to instruction l3. (We say that
we have a SUB instruction.)

– lh : halt – stop the machine. The final label lh is only assigned to this
instruction.

A register machine M is said to generate a vector (s1, . . . , sk) of natural
numbers if, starting with the instruction with label l0 and all registers containing
the number 0, the machine stops (it reaches the instruction lh : halt) with the
first k registers containing the numbers s1, . . . , sk (and all other registers being
empty).

Without loss of generality, in the succeeding proofs we will assume that
in each ADD instruction l1 : (A (r) , l2, l3) and in each SUB instruction l1 :
(S (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof see [6]).

The (non-deterministic) register machines are known to be computationally
complete, equal in power to (non-deterministic) Turing machines; especially we
know that three registers are enough to generate any recursively enumerable set
of natural numbers, where, moreover, the only instructions on the first register
are ADD instructions (see [3], [9]).

2.2 Tissue P Systems with Symport / Antiport Rules

The reader is supposed to be familiar with basic elements of membrane comput-
ing, e.g., from [12]; comprehensive information can be found on the P systems
web page http://psystems.disco.unimib.it.

Tissue P systems were introduced in [8], and tissue-like P systems with chan-
nel states were investigated in [6]. Here we deal with the following type of systems
(omitting the channel states):

A tissue P system (of degree m ≥ 1) with symport / antiport rules is a
construct

Π =
(
m,O,w1, . . . , wm, ch, (R (i, j))(i,j)∈ch

)
,

where m is the number of cells, O is the alphabet of objects, w1, . . . , wm are
strings over O representing the initial multiset of objects present in the cells of
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the system (it is assumed that the m cells are labelled with 1, 2, . . . ,m, and,
moreover, we assume that all objects from O appear in an unbounded number
in the environment), ch ⊆ {(i, j) | i, j ∈ {0, 1, 2, . . . ,m} , (i, j) �= (0, 0)} is the set
of links (channels) between cells (these were called synapses in [6]; 0 indicates
the environment), R (i, j) is a finite set of antiport rules of the form x/y, for
some x, y ∈ O∗, associated with the channel (i, j) ∈ ch.

An antiport rule of the form x/y ∈ R (i, j) for the ordered pair (i, j) of cells
means moving the objects specified by x from cell i (from the environment, if
i = 0) to cell j, at the same time moving the objects specified by y in the opposite
direction. The rules with one of x, y being empty are, in fact, symport rules, but
we do not always explicitly consider this distinction here, as it is not relevant
for what follows. For short, we shall also speak of a tissue P system only when
dealing with a tissue P system with symport / antiport rules as defined above.

The computation starts with the multisets specified by w1, . . . , wm in the
m cells; in each time unit, a rule is used on each channel for which a rule can
be used (if no rule is applicable for a channel, then no object passes over it).
Therefore, the use of rules is sequential at the level of each channel, but it is
parallel at the level of the system: all channels which can use a rule must do
it (the system is synchronously evolving). The computation is successful if and
only if it halts.

The result of a halting computation is the number described by the multiplic-
ity of objects present in cell 1 in the halting configuration. The set of all natural
numbers computed in this way by the system Π is denoted by N(Π). The family
of sets N(Π) of natural numbers computed as above by systems with at most n
symbols and m cells is denoted by NOntP ′

m. When any of the parameters m,n
is not bounded, it is replaced by ∗.

In [6], only channels (i, j) with i �= j are allowed, and, moreover, for any
i, j only one channel out of {(i, j) , (j, i)} is allowed, i.e., between two cells (or
one cell and the environment) only one channel is allowed (as we shall see in
Section 5, this technical detail may influence considerably the computational
power). The family of sets N(Π) of vectors computed as above by such tissue P
systems with at most n symbols and at most m cells is denoted by NOntPm.

In the following we will not distinguish between a language L ⊆ {a}∗ and
the corresponding set of natural numbers Ps (L) =

{
k | ak ∈ L

}
, the Parikh set

of L.

3 Computational Completeness with One Symbol

In [4] it was shown that one symbol is enough for obtaining computational
completeness when using at least seven cells:

Theorem 1. NRE = NO1tPn for all n ≥ 7.

Omitting the condition that for any i, j only one channel out of {(i, j) , (j, i)}
is allowed, at least one cell can be saved (i.e., the one used as the trap, see [4]):

Theorem 2. NRE = NO1tP
′
n for all n ≥ 6.
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4 Computational Completeness
with Two and Three Symbols

As we are going to prove in this section, there seems to be a trade-off between
the number of cells and the number of symbols: as our main result, we show that
in the case of allowing two channels between a cell and the environment (we can
restrict ourselves to only one channel between cells) computational completeness
can be obtained with two cells and three symbols as well as with three cells and
two symbols, respectively. We first show that when allowing only two symbols
we need at most three cells for obtaining computational completeness:

Theorem 3. NRE = NOntP
′
m for all n ≥ 2 and m ≥ 3.

Proof. We only prove NRE ⊆ NO2tP
′
3.

Let us consider a register machine M = (3, R, l0, lh) with three registers
generating L ∈ NRE; we now construct the tissue P system (of degree 3)

Π =
(
3, {a, b} , w1, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(0, 1) , (0, 2) , (0, 3) , (1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1)} ,

which simulates the actions of M in such a way that Π halts if and only if M
halts, thereby representing the final contents of register 1 of M by the corre-
sponding multisets of symbols in the first cell (and no other symbols contained
there). Throughout the computation, cell i of Π represents the contents of reg-
ister i by the corresponding number of symbols a, whereas specific numbers of
the symbol b represent the instructions to be simulated; moreover, b also has
the function of a trap symbol, i.e., in case of the wrong choice for a rule to be
applied we take in so many symbols b that we can never again get rid of them
and therefore get “trapped” in an infinite loop.

An important part of the proof is to define a suitable encoding c for the
instructions of the register machine: Without loss of generality we assume the
labels of M to be positive integers such that the labels assigned to ADD and
SUB instructions have the values di + 1 for 0 ≤ i < t− 1, as well as l0 = 1 and
lh = d (t− 1) + 1, for some t > 1 and some constant d > 1 which allows us to
have d consecutive codes for each instruction. As we shall see, in this proof it
suffices to take d = 7.

We now define the encoding c on natural numbers in such a way that c : N→
N is a linear function that has to obey to the following additional conditions:

– For any i, j with 1 ≤ i, j < dt, c (i)+ c (j) > c (dt) , i.e., the sum of the codes
of two instruction labels has to be larger than the largest code c (dt) we will
ever use for the given M .

– The distance g between any two codes c (i) and c (i + 1) has to be large
enough to allow one copy of the symbol b to be used for appearance checking
as well as to allow specific numbers between 1 and g of copies of b to detect
an incorrect application of rules.
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As we shall see in the construction of the rules below, we may take g = 2. A
function c fulfilling all the conditions stated above then, for example, is

c (x) = gx + gdt = 2x + 14t for x ≥ 0.

With l0 = 1 we therefore obtain c (l0) = 14t + 2 and w1 = bc(l0) = b14t+2.
Finally, we have to find a number f which is so large that after the introduc-

tion of f symbols we inevitably enter an infinite loop with the rule b2f/b2; as we
shall see below, we can take f = 2c (dt) .

Equipped with this coding function c and the constants defined above we are
now able to define the following sets of symport / antiport rules for simulating
the actions of the given register machine M :

R(0,1) = R(0,2) = R(0,3) =
{
b2f/b2

}
,

R(1,0) =
{
bc(l1)/bc(l2)a, bc(l1)/bc(l3)a | l1 : (A(1), l2, l3) ∈ R

}
∪

{
bc(l1)/bc(l1+1)a, bc(l1+2)/bc(l2), bc(l1+2)/bc(l3) |

l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}}
∪

{
bc(l1)/bc(l1+1)+1, bc(l1+2)/bc(l1+3), bc(l1+4)/bc(l3),

bc(l1)/bc(l1+5), bc(l1+6)/bc(l2) |
l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} ∪

{
bc(lh)/λ

}
,

R(1,2) =
{
bc(l1+1)a/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
bc(l1+1)+1/λ, bc(l1+3)/λ, bc(l1+5)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} ,
R(2,0) =

{
ba/b2f

}
,

R(2,3) =
{
bc(l1+1)/λ | l1 : (A(2), l2, l3) ∈ R

}
∪

{
bc(l1+1)a/λ | l1 : (A(3), l2, l3) ∈ R

}
∪

{
bc(l1+1)/λ, bc(l1+3)+1/λ, bc(l1+5)a/λ | l1 : (S(2), l2, l3) ∈ R

}
∪

{
bc(l1+1)+1/λ, bc(l1+3)/λ, bc(l1+5)/λ | l1 : (S(3), l2, l3) ∈ R

}
,

R(3,0) =
{
bc(l1+1)/bc(l1+2) | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
bc(l1+1)/bc(l1+2), bc(l1+3)+1/bc(l1+4),

bc(l1+5)a/bc(l1+6) | l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}
}

∪
{
ba/b2f

}
,

R(3,1) =
{
bc(l1+2)/λ | l1 : (A(r), l2, l3) ∈ R, r ∈ {2, 3}

}
∪

{
bc(l1+2)/λ, bc(l1+4)/λ, bc(l1+6)/λ |

l1 : (S(r), l2, l3) ∈ R, r ∈ {2, 3}} .

The correct work of the rules in Π can be described as follows:

1. Throughout the whole computation in Π, the application of rules is directed
by the code bc(l) for some l ≤ lh; in order to guarantee the correct sequence
of encoded rules, superfluous symbols b in case of a wrong choice guarantee
an infinite loop with the symbols b by the “trap rule” b2f/b2 in the rule sets
R(0,i), i ∈ {1, 2, 3} .
The number 2f is so large that even in cell 1 which allows for the elimination
of c (lh) symbols b enough symbols b remain to repeat the “trap rule” b2f/b2.
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2. Each ADD instruction l1 : (A(1), l2, l3) of M is directly simulated by the
rules

bc(l1)/bc(l2)a or bc(l1)/bc(l3)a
in R(1,0) in one step. The ADD instructions l1 : (A(r), l2, l3) of M, r ∈
{2, 3} , are simulated in six steps in such a way that the new symbol a is
transported to the corresponding cell r and, moreover, in cell 3 the code
c (l1) is exchanged with the code c (l1 + 1) in order to guarantee that when
returning to cell 1 a different code arrives which does not allow for misusing a
symbol a representing the contents of register 1 in cell 1 to start a new cycle
with the original code. For example, the simulation of an ADD instruction
l1 : (A(2), l2, l3) is accomplished by applying the following sequence of rules:

bc(l1)/bc(l1+1)a from R(1,0),

bc(l1+1)a/λ from R(1,2),

bc(l1+1)/λ from R(2,3),

bc(l1+1)/bc(l1+2) from R(3,0),

bc(l1+2)/λ from R(3,1),

bc(l1+2)/bc(l2) or bc(l1+2)/bc(l3) from R(1,0).

If we do not choose one of the correct rules, then an infinite loop will be
entered by the rule b2f/b2 from the rule sets R(0,i), i ∈ {1, 2, 3}, as the
coding function has been chosen in such a way that instead of the correct
rule for a label l only rules for labels l′ < l could be chosen, whereas on the
other hand, the number of symbols b is not large enough for allowing the
remaining rest being interpreted as the code of another instruction label.

3. For simulating the decrementing step of a SUB instruction l1 : (S(r), l2, l3)
from R we send the code bc(l1+5) to the corresponding cell r, where a correct
continuation is only possible if this cell contains at least one symbol a. For
example, decrementing register 2 is accomplished by applying the following
sequence of six rules:

bc(l1)/bc(l1+5) from R(1,0),

bc(l1+5)/λ from R(1,2),

bc(l1+5)a/λ from R(2,3),

bc(l1+5)a/bc(l1+6) from R(3,0),

bc(l1+6)/λ from R(3,1),

bc(l1+6)/bc(l2) from R(1,0).

Again we notice that if at some moment we do not choose the correct rule,
then the application of the rule b2f/b2 will cause an infinite loop.

4. For simulating the zero test, i.e., the case where the contents of register
r is zero, of a SUB instruction l1 : (S(r), l2, l3) from R we send the code
bc(l1+1) together with one additional copy of the symbol b to cell r, where this
additional symbol b may cause the application of the rule ba/b2f which then
will lead to an infinite computation. In cell 3, the code bc(l1+1) is exchanged
with the code bc(l1+2), which is exchanged with bc(l1+3) in cell 1. This code
bc(l1+3) then captures the additional symbol b left back in cell r, and in cell
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3 this additional symbol b goes out together with code bc(l1+3), instead, code
bc(l1+4) continues and in cell 1 allows for replacing it with bc(l2). For example,
for testing register 3 for zero we take the following rules:

bc(l1)/bc(l1+1)+1 from R(1,0),

bc(l1+1)+1/λ from R(1,2),

bc(l1+1)+1/λ from R(2,3),

bc(l1+1)/bc(l1+2) from R(3,0),

bc(l1+2)/λ from R(3,1),

bc(l1+2)/bc(l1+3) from R(1,0),

bc(l1+3)/λ from R(1,2),

bc(l1+3)/λ from R(2,3),

bc(l1+3)+1/bc(l1+4) from R(3,0),

bc(l1+4)/λ from R(3,1),

bc(l1+4)/bc(l3) from R(1,0).

Once again we notice that if at some moment we do not choose the correct
rule, then the application of the rule b2f/b2 will cause an infinite loop.

5. Finally, for the halt label lh we take the rule bc(lh)/λ from R(1,0), hence, the
work of Π will stop exactly when the work of M stops (provided the system
has not become overflowed by symbols b due to a wrong non-deterministic
choice during the computation).

From the explanations given above we conclude that Π halts if and only if
M halts, and moreover, the final configuration of Π represents the final contents
of the registers in M (i.e., the number of symbols in cell 1 corresponds with the
number generated in register 1). These observations conclude the proof.

Instead of the second channels (0, i) , i ∈ {1, 2, 3} , between the cells and the
environment we could also use a fourth cell which then acts as a trap:

Corollary 1. NRE = NOntPm for all n ≥ 2 and m ≥ 4.

Proof. We only prove NRE ⊆ NO2tP4.
Let us consider the tissue P system (of degree 4)

Π ′ =
(
4, {a, b} , w1, λ, λ, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1) ,
(4, 0) , (4, 1) , (4, 2) , (4, 3)} ,

where w1 and the rule sets R (i, j) for

(i, j) ∈ {(1, 0) , (1, 2) , (2, 0) , (2, 3) , (3, 0) , (3, 1)}

are exactly the same as in the proof of Theorem 3; the additional sets R (4, j)
for j ∈ {1, 2, 3} contain the “trap rule” λ/b2 which starts the trap represented
by the rule b/b in R (4, 0) . Except for the way of trapping the system, Π ′ works
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in the same way as the system Π constructed in the proof of Theorem 3, which
observation completes the proof.

On the other hand, when the number of objects is increased to three, we
need one cell less:

Theorem 4. NRE = NOntP
′
m for all n ≥ 3 and m ≥ 2.

Proof. We only prove NRE ⊆ NO3tP
′
2.

As in the previous proof, we consider a register machine M = (3, R, l0, lh)
with three registers generating L ∈ NRE; we now construct the tissue P system
(of degree 2)

Π =
(
2, {a, b, c} , w1, λ, ch, (R (i, j))(i,j)∈ch

)
,

ch = {(0, 1) , (0, 2) , (1, 0) , (1, 2) , (2, 0)} ,

which simulates the actions of M in such a way that throughout the computation,
specific numbers of the symbol b represent the instructions to be simulated, the
number of symbols a in cell 1 of Π represents the contents of register 1 by the
corresponding number of symbols a and the new symbol c represents the contents
of registers 2 and 3 by the corresponding number of symbols c in cells 1 and 2,
respectively.

We shall use the same encoding c and the same initial string w1 as in the
previous proof. The zero test now uses the rule bc/b2f in R(1,0) or R(2,0), respec-
tively.

In sum, we define the following sets of symport / antiport rules for simulating
the actions of the given register machine M :

R(0,1) = R(0,2) =
{
b2f/b2

}
,

R(1,0) =
{
bc(l1)/bc(l2)a, bc(l1)/bc(l3)a | l1 : (A(1), l2, l3) ∈ R

}
∪

{
bc(l1)/bc(l2)c, bc(l1)/bc(l3)c | l1 : (A(2), l2, l3) ∈ R

}
∪

{
bc(l1)/bc(l1+1)c, bc(l1+2)/bc(l2), bc(l1+2)/bc(l3) |

l1 : (A(3), l2, l3) ∈ R}
∪

{
bc(l1)/bc(l1+1)+1, bc(l1+2)+1/bc(l3), bc(l1)c/bc(l2) |

l1 : (S(2), l2, l3) ∈ R}
∪

{
bc(l1)/bc(l1+1)+1, bc(l1+2)/bc(l1+3), bc(l1+4)/bc(l3),

bc(l1)/bc(l1+5), bc(l1+6)/bc(l2) |
l1 : (S(3), l2, l3) ∈ R} ∪

{
bc(lh)/λ, bc/b2f

}
,

R(1,2) =
{
bc(l1+1)c/λ, λ/bc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪

{
bc(l1+1)/λ, λ/bc(l1+2) | l1 : (S(2), l2, l3) ∈ R

}
∪

{
bc(l1+1)+1/λ, λ/bc(l1+2), bc(l1+3)/λ,

λ/bc(l1+4), bc(l1+5)/λ, λ/bc(l1+6) |
l1 : (S(3), l2, l3) ∈ R} ∪

{
b4/λ, λ/b2

}
,

R(2,0) =
{
bc(l1+1)/bc(l1+2) | l1 : (A(3), l2, l3) ∈ R

}
∪

{
bc(l1+1)/bc(l1+2) | l1 : (S(2), l2, l3) ∈ R

}
∪

{
bc(l1+1)/bc(l1+2), bc(l1+3)+1/bc(l1+4),

bc(l1+5)c/bc(l1+6) | l1 : (S(3), l2, l3) ∈ R
}
∪
{
bc/b2f

}
.
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As one can easily see, Π halts if and only if M halts, and moreover, in the
final configuration of Π cell 1 represents the final contents of register 1 in M.
If at some moment we do not use the correct rule, then an infinite loop will be
entered by applying the rule b2f/b2 from the rule sets R(0,i), i ∈ {1, 2} . These
observations conclude the proof.

The next result follows from Theorem 4 in a similar way as the proof of
Corollary 1 followed from the proof of Theorem 3; hence, we omit the proof:

Corollary 2. NRE = NOntPm for all n ≥ 3 and m ≥ 3.

5 Tissue P Systems with One Cell

In this section we investigate the remaining variant of using only one cell, in
which case it turns out that the definition of the tissue P system is essential, i.e.,
computational completeness can only be obtained with two channels between
the cell and the environment, whereas we can only generate regular sets when
using only one channel between the cell and the environment.

The proof of the following completeness result can be obtained following the
construction given in [1] for P systems and therefore is omitted:

Theorem 5. NRE = NOntP
′
1 for all n ≥ 5.

We now consider the case of tissue P systems with only one channel between
the cell and the environment. In the simplest case of only one symbol, we only
get finite sets:

Example 1. To each finite one-letter language L we can construct the tissue P
system Π = (1, {a} , w1, {(1, 0)} , R (1, 0)) where w1 = am with m = max{i | ai ∈
L} and R (1, 0) = {am/aj | aj ∈ L, j < m}. Obviously, Ps (L) = N (Π) .

The proof of the following theorem is obvious and therefore omitted:

Theorem 6. NFIN = NO1tP1 = NO1tP
′
1.

The following result shows that with only one cell and one channel between
the single cell and the environment only regular sets can be generated (due to
lack of space we have to omit the proof):

Theorem 7. NREG = NOntP1 for all n ≥ 2.

6 Conclusion

In sum, for tissue P systems with only one channel between two cells and between
a cell and the environment we could show the results listed in Table 1 (we have
omitted the proof of the completeness result NRE = NOntPm for all n ≥ 4 and
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Table 1. Families NOmtPn

symbols
4 NREG NRE NRE NRE NRE NRE NRE
3 NREG ? NRE NRE NRE NRE NRE
2 NREG ? ? NRE NRE NRE NRE
1 NFIN ? ? ? ? ? NRE

1 2 3 4 5 6 7 cells

m ≥ 2, which needs a different proof technique following the construction given
in [1] for P systems).

The main open question concerns a characterization of the sets of natural
numbers in NO2tP2, NO2tP3, and NO3tP2. Further, it would be interesting to
find the minimal number l such that NO1tPl contains all recursively enumerable
sets of natural numbers, whereas the families NO1tPj with j < l do not fulfill
this condition. Finally, it remains to find characterizations of the sets of natural
numbers in those families NO1tPj that do not contain all recursively enumerable
sets of natural numbers.

Table 2. Families NOmtP ′
n

symbols
5 NRE NRE NRE NRE NRE NRE
4 ? NRE NRE NRE NRE NRE
3 ? NRE NRE NRE NRE NRE
2 ? ? NRE NRE NRE NRE
1 NFIN ? ? ? ? NRE

1 2 3 4 5 6 cells

The most interesting open problems for the families NOntP
′
m are to find

the minimal number k as well as the minimal number l such that NOktP
′
1 and

NO1tP
′
l , respectively, contain all recursively enumerable sets of natural numbers,

whereas the families NOitP
′
1 and NO1tP

′
j with i < k and j < l, respectively,

do not fulfill this condition. Moreover, it remains to find characterizations of
the sets of natural numbers in those families NOntP

′
m that do not contain all

recursively enumerable sets of natural numbers.

Related open problems concern the families NOmPn of sets of natural num-
bers generated by P systems with symport / antiport rules as well as n symbols
and m membranes. The first result proving computational completeness for P
systems with three symbols and four membranes was obtained in [13] and con-
tinued in [1], where P systems with five symbols in only one membrane were
shown to be computationally complete. The main open problem in the case of P
systems is the question whether one symbol is sufficient to obtain computational
completeness as was shown for the case of tissue P systems in [4].



Tissue P Systems with Small Numbers of Symbols and Cells 111

Acknowledgement

The work of Marion Oswald was supported by FWF-project T225-N04.

References

1. Alhazov, A., Freund, R.: P systems with one membrane and symport/ antiport
rules of five symbols are computationally complete. To appear in the Proceedings
of the Third Brainstorming Week on Membrane Computing, Sevilla (2005)
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12. Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag, Berlin (2002)
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The Mortality Threshold
for Partially Monotonic Automata

Dmitry S. Ananichev�
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620083 Ekaterinburg, Russia
Dmitry.Ananichev@usu.ru

Abstract. A deterministic incomplete automaton A = 〈Q, Σ, δ〉 is par-
tially monotonic if its state set Q admits a linear order such that each
partial transformation δ( , a) with a ∈ Σ preserves the restriction of the
order to the domain of the transformation. We show that if A possesses
a ‘killer’ word w ∈ Σ∗ whose action is nowhere defined, then A is ‘killed’

by a word of length |Q| +
⌊ |Q| − 1

2

⌋
.

1 Background and Motivation

A deterministic incomplete automaton A = 〈Q,Σ, δ〉 is defined by specifying
a finite state set Q, a finite input alphabet Σ, and a partial transition function
δ : Q × Σ → Q. The partial function δ extends in a unique way to a partial
action Q×Σ∗ → Q of the free monoid Σ∗ over Σ; this extension is still denoted
by δ. Thus, each word w ∈ Σ∗ defines a partial transformation of the set Q
denoted by δ( , w).

Given a deterministic incomplete automaton A = 〈Q,Σ, δ〉, it may happen
that for some word w ∈ Σ∗ the partial transformation δ( , w) is nowhere de-
fined. The intuition is that the automaton A breaks when being fed with the
input w; we therefore say that the word w kills A .

There are several rather natural questions concerning the notion of a killer
word: how mortal automata (that is, incomplete automata possessing a killer
word) can be recognized, how long a killer word for a given mortal automaton
may be, etc. These questions are tightly related to the synchronization problems
for complete automata with 0. Recall that a deterministic automaton is said to
be complete if its transition function is totally defined. A complete automaton
A = 〈Q,Σ, ζ〉 is called synchronizing if there exists a word w ∈ Σ∗ whose
action resets A , that is, leaves the automaton in one particular state no matter
at which state in Q it started: ζ(q, w) = ζ(q′, w) for all q, q′ ∈ Q. Any word w
with this property is said to be a reset word for the automaton.

Given a complete automaton A = 〈Q,Σ, ζ〉, we say that s ∈ Q is a sink state
if ζ(s, a) = s for all a ∈ Σ. It is clear that any synchronizing automaton may
� The work was supported by the Federal Education Agency of Russia, grant 49123 and

04.01.437, the President Program of Leading Scientific Schools, grant 2227.2003.1,
and the Russian Foundation for Basic Research, grant 05-01-00540
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have at most one sink state and any word that resets a synchronizing automaton
possessing a sink state brings all states to the sink. In such a situation, we
denote the unique sink state by 0 and refer to the automaton as a synchronizing
automaton with 0.

Every incomplete automaton A = 〈Q,Σ, δ〉 can be completed in the follow-
ing obvious way. First one adds a new state 0 to the state set Q; let Q0 stand for
the resulting set Q ∪ {0}. Then one extends the partial function δ : Q×Σ → Q
to a total function ζ : Q0 ×Σ → Q0 setting for all p ∈ Q0 and all a ∈ Σ

ζ(p, a) =

{
δ(p, a) if δ(p, a) is defined,
0 otherwise.

We call the automaton 〈Q0, Σ, ζ〉 the 0-completion of the incomplete automaton
A and denote this completion by A 0. It is then clear that the 0-completion of
a mortal automaton is a synchronizing automaton with 0, and vice versa, every
mortal automaton can be obtained from a synchronizing automaton with 0 by
removing the zero state and all arrows leading to it.

Recall that the general problem of determining the synchronization threshold
(that is, the maximum length of the shortest reset word) for a synchronizing
automaton with a given number n of states still remains open. (The famous
Černý conjecture [3] claiming that this threshold is equal to (n− 1)2 is arguably
the most longstanding open problem in the combinatorial theory of finite au-
tomata.) In contrast, the restriction of this problem to the case of synchronizing
automata with 0 admits an easy solution: the synchronization threshold for n-
state synchronizing automata with 0 is known to be equal to n(n−1)

2 (see, for
instance, [5, Theorem 6.1]). Applying this result to 0-completions of mortal au-
tomata, one readily obtains the value n(n+1)

2 for the mortality threshold (that
is, the maximum length of the shortest killer word) for mortal automata with n
states. However, the situation becomes much more intricate for the important
subcase of aperiodic automata.

Recall that a deterministic finite automaton A (complete or not) is said to
be aperiodic if all subgroups of its transition monoid are singletons. (In view of
a celebrated theorem of Schützenberger [6] this amounts to saying that A can
recognize only star-free languages.) It is to be expected that for mortal aperiodic
automata with n states the mortality threshold is smaller than in the general case
but up to now no bound better than n(n+1)

2 has been found. On the other hand,
all known examples of mortal aperiodic automata possess short killer words so
that it even was conjectured that such an automaton always can be killed by a
word whose length does not exceed the number of states of the automaton, see
a discussion in [2, Section 3].

Determining the mortality threshold for aperiodic automata is especially im-
portant in view of recent results on synchronization of aperiodic automata due
to Trahtman [7] and Volkov (unpublished). Without going into detail, we men-
tion that the problem of finding the synchronization threshold for arbitrary
synchronizing aperiodic automata can be easily reduced to the cases of strongly
connected automata and synchronizing automata with 0. The currently known
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upper bound of the synchronization threshold for strongly connected aperiodic
automata with n states is "n(n+1)

6 # which is less than n(n−1)
2 for all n > 2.

Therefore any improved upper bound of the synchronization threshold for syn-
chronizing aperiodic automata with 0 will immediately yield a corresponding
improvement for arbitrary synchronizing aperiodic automata.

In the present paper we study incomplete automata of a special kind which we
call partially monotonic. A deterministic incomplete automaton A = 〈Q,Σ, δ〉
is partially monotonic if its state set Q admits a linear order such that each
partial transformation δ( , a) with a ∈ Σ preserves the restriction of the order
to the domain of the transformation. This means that for all q, q′ ∈ Q such that
q ≤ q′ and both δ(q, a) and δ(q′, a) are defined, one has δ(q, a) ≤ δ(q′, a). It
is well known and easy to verify that each partially monotonic automaton is
aperiodic (but the converse, generally speaking, is not true). Our main result
gives a linear upper bound for the mortality threshold for partially monotonic
automata:

Theorem 1. If a partially monotonic automaton with n states is mortal, then

it has a killing word of length at most n + "n− 1
2
#.

We also present a series of examples of mortal partially monotonic automata
showing that this bound is tight for n ≥ 6. The proof that the nth automaton in
the series cannot be killed by a shorter word is quite long and therefore is not
included here due to length limitations. This proof will be published elsewhere.

Our proof of Theorem 1 is based on a careful analysis of certain properties
of complete monotonic automata which for brevity will be called monotonic
in the sequel. (The term ‘monotonic automaton’ was also used in [4] but in a
different sense.) Basic synchronization properties of monotonic automata have
been already studied in [1] but here we need some refinements of the results of
that paper.

Throughout the paper we assume that the state set Q of automata under
consideration is the set {1, 2, 3, . . . , n} of the first n positive integers with the
usual order 1 < 2 < 3 < · · · < n.

2 Strongly Connected Monotonic Automata

We call a DFA A = 〈Q,Σ, δ〉 strongly connected if the graph of A is strongly
connected, that is, for any states p, q ∈ Q there is a word w ∈ Σ∗ such that
δ(p, w) = q.

We need the following property of strongly connected monotonic automata.

Lemma 1. Let A = 〈Q,Σ, δ〉 be a strongly connected monotonic automaton.
Then for any state q ∈ Q \ {1} there is a letter a ∈ Σ such that δ(q, a) < q and
for any state q ∈ Q \ {n} there is a letter b ∈ Σ such that δ(q, b) > q.

Proof. Consider a word w such that δ(q, w) = 1 < q. (Such a word w exists
because the automaton A is strongly connected.) We find the shortest prefix u
of the word w such that δ(q, u) < q and take the last letter of u as a.
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By the choice of the letter a we see that u = va, p = δ(q, v) ≥ q and
δ(p, a) < q. The automaton A is monotonic whence δ(q, a) ≤ δ(p, a) < q.

The letter b with δ(q, b) > q can be found in a similar way. ��

Let X be a subset of the state set of the automaton A = 〈Q,Σ, δ〉. We define
the full preimage of degree k of the set X as

P k(X) = {q ∈ Q | (∃w ∈ Σ∗) |w| ≤ k and δ(q, w) ∈ X}.

Let P (X) = P 1(X). Observe that P k(X) ⊆ P k+1(X) for any k. Moreover, if
the automaton A is strongly connected then the equality P k(X) = P k+1(X)
implies that P k(X) = Q. Therefore, the unequality P k(X) �= Q implies that
|P k(X)| ≥ |X |+ k.

Let A = 〈Q,Σ, δ〉 be a strongly connected monotonic automaton. We say
that a subset X of the set Q is a special set if |P (X)\X | = 1 and X∩{1, n} = ∅.

Our next lemma points out a useful property of some special sets.

Lemma 2. Let p ∈ Q and let X = P k({p}) be a special set in a strongly con-
nected monotonic automaton A = 〈Q,Σ, δ〉. Then there is a word w ∈ Σ∗ of
length at most n− 2− k such that either δ(1, w) = n or δ(n,w) = 1.

Proof. Let q denote the unique state of the difference P (X) \X . We construct
two sequences q = q0 > q1 > · · · > qα = 1 and q = p0 < p1 < · · · < pβ = n
in the following way. Using Lemma 1 for each i ∈ {0, 1, 2, . . . , α − 1} we find a
letter ai ∈ Σ such that δ(qi, ai) < qi. We denote δ(qi, ai) by qi+1. Also for each
j ∈ {0, 1, 2, . . . , β − 1} we find a letter bj ∈ Σ such that pj+1 = δ(pj , bj) > pj .

Let f =
{

min{i|qi �∈ P (X)} if q0 �= 1,
0 if q0 = 1,

and g =
{

min{i|pi �∈ P (X)} if p0 �= n,
0 if p0 = n.

Then {p1, p2, . . . , pg−1, q1, q2, . . . , qf−1} ⊆ X , whence |X | ≥ f + g − 2.
Now we assume that f ≤ g and using Lemma 1 find a word w such that

δ(n,w) = 1. Then we show that the length of this word is at most n− 2− k. By
symmetry, in case g ≥ f we find a word w of length at most n− 2− k such that
δ(1, w) = n.

By Lemma 1 there are the chain n = r1 > r2 > · · · > rs+1 = 1 and a
word w = c1c2 · · · cs such that δ(ri, ci) = ri+1 for each i ∈ {1, 2, . . . , s}. If the
intersection {r1, r2, . . . , rs+1} ∩X is empty, then

|w| = s ≤ n− 1− |X | = n− |P k({p})| − 1 ≤ n− k − 2.

In the opposite case we consider the first element rh of this chain that lies in
P (X). Observe that rh = q. Indeed, if rh �= q, then rh ∈ X whence rh−1 ∈ P (X).

The ways of constructing the chains r1 > r2 > · · · > rs+1 and q0 > q1 > · · · >
qα are identical and rh = q0. Therefore we can take ch = a0 and obtain rh+1 = q1,
take ch+1 = a1 and obtain rh+2 = q2 and so on. Finally, we take ch+f−1 = af−1

and obtain rh+f = qf . Observe that ri �∈ P (X) for any i ≥ h + f . Indeed, if we
consider the first element ri ∈ P (X) for i ≥ h + f we come to a contradiction
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because as above ri = q = q0 > qf = rh+f but i ≥ h + f implies ri ≤ rh+f .
Summarizing, we have obtained that {r1, r2, . . . , rs+1}∩P (X) = {q0, q1, . . . qf−1}
whence |w| = s ≤ n− 1− |P (X)|+ f = n− 2 + (f − |X |).

To complete the proof it suffices to show that f − |X | ≤ −k. Observe that if
pi ∈ Pu({p}) for some i > 0 and u ≤ k, then pi−1 ∈ Pu+1({p}). Therefore pi ∈
P k−f+1({p}) for some i ∈ {1, 2, . . . , f − 1} contradicts to p0 �∈ P k({p}), whence
pi �∈ P k−f+1({p}) for i ∈ {1, 2, . . . , f − 1} and, similarly, qi �∈ P k−f+1({p})
for i ∈ {1, 2, . . . , f − 1}. It means that {p1, p2, . . . , pf−1, q1, q2, . . . , qf−1} ⊆ X \
P k−f+1({p}). Hence 2f − 2 ≤ |X | − |P k−f+1({p})| ≤ |X | − (k − f + 2), and
therefore, f − |X | ≤ −k. ��

The next fact is crucial for the proof of our main result.

Proposition 1. Let A = 〈Q,Σ, δ〉 be a strongly connected monotonic automa-
ton. Given a state p ∈ Q, there is a word w of length at most 3

2 (n− 1) such that
δ(q, w) = p for all q ∈ Q.

Proof. Consider the chain of the full preimages of the set {p}:

{p} = P 0({p}) ⊆ P 1({p}) ⊆ P 2({p}) ⊆ · · · ⊆ P t({p}).

Let Y = P s({p}) be the minimal set of this chain containing 1 or n. We
suppose that 1 ∈ Y . The case n ∈ Y is symmetric.

If there is no special sets in this chain, then |P i({p})\P i−1({p})| ≥ 2 for each
i ∈ {1, ..., s}, hence 2s + 1 ≤ |Y | ≤ |Q| = n. By Lemma 1 there is a word u of
length at most n−1 such that δ(n, u) = 1. Since the automaton A is monotonic,
δ(q, u) = 1 for any q ∈ Q. The inclusion 1 ∈ Y = P s({p}) implies that there is
a word v of length at most s ≤ 1

2 (n − 1) such that δ(1, v) = p. If w = uv then
|w| ≤ 3

2 (n− 1) and δ(q, w) = p for any q ∈ Q.
Now let X = P k({p}) be the maximal special set of the chain.
By the choice of k and s we obtain that |Y | − |P (X)| ≥ 2(s− k − 1), hence

|Y | ≥ |P (X)|+2(s−k−1) = |P k+1({p})|+2(s−k−1) ≥ k+2+2(s−k−1) = 2s−k.
By Lemma 2 there is a word u ∈ Σ∗ of length at most n − 2 − k such that

either δ(1, u) = n or δ(n, u) = 1.

Case 1 : δ(1, u) = n.
Since the automaton A is monotonic, δ(q, u) = n for any q ∈ Q. Since the

automaton A is strongly connected, there is a word u1 of length at most n−|Y |
such that δ(n, u1) ∈ Y . By the definition of Y = P s({p}) there is a word v1 of
length at most s such that δ(δ(n, u1), v1) = p. Denote uu1v1 by w1. Observe that
|w1| = |u|+ |u1|+ |v1| ≤ (n−2−k)+(n−|Y |)+s ≤ (n−2−k)+(n−2s+k)+s =
2(n− 1)− s and δ(q, w1) = p for any q ∈ Q.

Furthermore, by Lemma 1 there is a word u2 of length at most n−1 such that
δ(n, u2) = 1. Since the automaton A is monotonic, δ(q, u2) = 1 for any q ∈ Q.
The inclusion 1 ∈ Y = P s({p}) implies that there is a word v2 of length at most
s such that δ(1, v2) = p. Denote u2v2 by w2. It is easy to see that |w2| ≤ n−1+s
and δ(q, w2) = p for any q ∈ Q.

Let w be the shortest word in the pair w1, w2. The inequality n − 1 + s ≤
2(n− 1)− s implies that s ≤ 1

2 (n− 1), therefore |w| ≤ 3
2 (n− 1).
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Case 2 : δ(n, u) = 1.
The inclusion 1 ∈ Y = P s({p}) implies that there is a word v of length at

most s such that δ(1, v) = p. Let w = uv. It is easy to see that |w| ≤ n−k−2+s
and δ(q, w) = p for any q ∈ Q. Observe that −k ≤ 0 and s−k ≤ |Y |− s ≤ n− s,
therefore |w| ≤ min{n + s− 2, 2n− s− 2} ≤ 3

2n− 2 < 3
2 (n− 1). ��

Next propositions describe the structure of monotonic automata. We use
these statements to generalize Proposition 1 to the set of all synchronizing mono-
tonic automata and to prove Theorem 1.

We need some definitions to formulate the propositions.
Given a word w ∈ Σ∗ and non-empty subset X ⊆ Q, we write X.w for

the set {δ(x,w) | x ∈ X} Given an automaton A = 〈Q,Σ, δ〉, we define the
rank of a word w ∈ Σ∗ with respect to A as the cardinality of the image of the
transformation δ( , w) of the set Q that is |Q.w|. (Thus, in this terminology reset
words are precisely words of rank 1.) Define the rank r(A ) of an automaton A as
the minimum rank of words with respect to A . (Thus, synchronizing automata
are precisely automata of rank 1.)

A subset X of a set Q is said to be invariant with respect to a transformation
ϕ : Q→ Q if Xϕ ⊆ X . A subset of the state set of an automaton A = 〈Q,Σ, δ〉
is called invariant if it is invariant with respect to all the transformations δ( , a)
with a ∈ Σ. If X is an invariant subset, we define the restriction of A to X
as the automaton AX = 〈X,Σ, δX〉 where δX is the restriction of the transition
function δ to the set X ×Σ.

To prove the next propositions we use some constructions and arguments
taken from the proof of Theorem 1 in [1]. In particular, the next two lemmas
coincide with respectively Lemmas 1 and 2 in [1].

Lemma 3. Let X be a non-empty subset of Q such that max(X.w) ≤ max(X)
for some w ∈ Σ∗. Then for each p ∈ [max(X.w),max(X)] there exists a word
D(X,w, p) of length at most max(X)− p such that max(X.D(X,w, p)) ≤ p.

The dual statement is

Lemma 4. Let X be a non-empty subset of Q such that min(X.w) ≥ min(X)
for some w ∈ Σ∗. Then for each p ∈ [min(X),min(X.w)] there exists a word
U(X,w, p) of length at most p − min(X) such that
min(X.U(X,w, p)) ≥ p.

For x, y ∈ Q with x ≤ y we denote by [x, y] the interval {x, x+1, x+2, . . . , y}.

Proposition 2. Let A = 〈Q,Σ, δ〉 be a synchronizing monotonic automaton.
Then there is an invariant subset P of the set Q such that the restriction AP

is a strongly connected automaton, and there is a word wA of length at most
|Q| − |P | such that δ(q, wA ) ∈ P for any q ∈ Q.

Proof. Let P = {q | {q} = Q.w for some w ∈ Σ∗}. In other words, P is the set
of all states to which the automaton A can be reset. Observe that the set P is
invariant. Indeed, arguing by contradiction, suppose that there are q ∈ P and
w ∈ Σ∗ such that δ(q, w) /∈ P . By the definition of P there is a word u such that
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Q.u = {q}. Hence Q.uw is an one-element set {δ(q, w)}. It contradicts to the
definition of P . The automaton AP is strongly connected because for any states
p, q ∈ P there is a word w ∈ Σ∗ such that Q.w = {q}, in particular, δ(p, w) = q.

Consider the interval I1 = [min(P ), n]. It is invariant. Indeed, arguing by
contradiction, suppose that there are q ∈ I and w ∈ Σ∗ such that δ(q, w) /∈ I.
Since the transformation δ( , w) is order preserving, δ(min(P ), w) ≤ δ(q, w) <
min(P ). That is δ(min(P ), w) �∈ P . It contradicts to the fact that P is an in-
variant set. Similarly, we obtain the dual fact that the interval I2 = [1,max(P )]
is invariant. Therefore the intersection I = I1 ∩ I2 is also invariant. We can
apply Lemma 4 to the set I1, the state 1 and a synchronizing word u ∈ Σ∗. Let
w1 = U(I1, u, 1); then the length of w1 is at most |Q| − |I1| and δ(1, w1) ∈ I1.
Since the transformation δ( , w1) is order preserving, it means that Q.w1 ⊆ I1.
By symmetry, we can find a word w2 of length at most |Q| − |I2| such that
Q.w2 ⊆ I2. The concatenation w1w2 has the length at most |Q| − |I|. Since the
interval |I1| is invariant, Q.w1w2 ⊆ I1 ∩ I2 = I.

Now fix a synchronizing word v such that Q.v = max(P ). Let |I \ P | = s.
We enumerate the elements q1, q2, . . . , qs of the difference I \ P such that q1 <
q2 < q3 < · · · < qs.

We prove that for each k ∈ {0, 1, . . . , s} there is a word uk of length at most
k such that I.uk ⊆ {qk+1, qk+2, . . . , qs} ∪ P . We induct on k with the obvious
base k = 0 (u0 is the empty word). Let k > 0. We find the last letter a in v
such that v = v1av2, δ(max(P ), v1) ≤ qk and δ(max(P ), v1a) ≥ qk. Observe that
δ(max(P ), v1a) �= qk, because the set P is invariant. Since the transformation
δ( , a) is order preserving, it means that δ(qi, a) > qk for all i ∈ {k, k+1, . . . , s}.
Let uk = uk−1a. By the induction assumption I.uk−1 ⊆ {qk, qk+1, . . . , qs} ∪ P .
Hence I.uk ⊆ ({qk, qk+1, . . . , qs} ∪ P ).a ⊆ {qk+1, qk+2, . . . , qs} ∪ P as required.

We obtain that Q.w1w2us ⊆ I.us ⊆ P and the length of the word w1w2us is
at most |Q| − |I|+ |I \P | = |Q| − |P |. Thus, the word w1w2us can be chosen to
play the role of wA from the formulation of the proposition. ��

Now we generalize Proposition 2 to arbitrary monotonic automaton.

Proposition 3. Let A = 〈Q,Σ, δ〉 be a monotonic automaton of rank k. Then
there are pairwise disjoint invariant subsets P1, P2, . . . , Pk of the set Q such that
all restrictions APi for i ∈ {1, . . . , k} are strongly connected automata, and there
is a word wA of length at most |Q|− |

⋃k
i=1 Pi| such that δ(q, wA ) ∈

⋃k
i=1 Pi for

any q ∈ Q.

Proof. Let A = 〈Q,Σ, δ〉 be a monotonic automaton of rank k. We induct on k.
If k = 1, then the automaton A is synchronizing and we can apply Proposi-

tion 2.
Let k > 1. Consider the set X = {min(Q.w) | w ∈ Σ∗, |Q.w| = k}. (This set

is not empty because by the condition of the proposition there exists a word of
rank k with respect to A .)

Let M = max(X) and let v ∈ Σ∗ be such that min(Q.v) = M and |Q.v| = k.
Observe that the interval Y = [1,M ] is invariant. Indeed, arguing by contradic-
tion, suppose that there are q ∈ Y and w ∈ Σ∗ such that δ(q, w) > M . Since the
transformation δ( , w) is order preserving, min(Q.vw) = δ(M,w) ≥ δ(q, w) >
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M . At the same time, |Q.vw| ≤ |Q.v| ≤ k whence min(Q.vw) belongs to the set
X (since the rank of A is k, the unequality |Q.wv| ≤ k means that |Q.wv| = k).
It contradicts to the choice of M . Observe that the restriction AY is a synchro-
nizing automaton. Indeed, there is a word v ∈ Σ∗ such that min(Q.v) = M (and
|Q.v| = k) by the choice of M but the interval Y = [1,M ] is invariant whence
Y.v = {M}.

Consider the set Z = {q ∈ Q | δ(q, w) ≤M for some w ∈ Σ∗}. Observe that
Z is an interval and that Y ⊆ Z since for q ∈ Y the empty word can serve as
w with δ(q, w) ≤ M . Therefore max(Z) ≥ M . Fix a word u ∈ Σ∗ such that
δ(max(Z), u) ≤ M . Then δ(q, u) ≤ M for each q ∈ Z as the transformation
δ( , u) is order preserving.

Now consider the interval T = [max(Z)+1, n] = Q\Z. It is invariant. Indeed,
suppose that there exist q ∈ T and w ∈ Σ∗ such that δ(q, w) ≤ max(Z). This
means that δ(q, wu) ≤M whence q ∈ Z, in a contradiction to the choice of q.

Let v1 be a word of minimal rank (k) with respect to the automaton A , v2

is a word of minimal rank with respect to the automaton AT , v3 is a reset word
for the automaton AY . Denote v1v2v3 by v. Then the word uv also has rank
k with respect to A , has a minimal rank with respect to AT and the word v
resets AY . We have Q.uv = Z.uv ∪ T.uv and Z.uv ⊆ Y.v. Since Y ⊆ Z and
|Y.v| = 1 we obtain that Z.uv = Y.v. The sets Y and T are invariant, therefore
k = |Q.uv| = |Y.v|+ |T.uv| = 1 + |T.uv|. Hence the rank of the restriction AT is
k − 1.

By the induction assumption there are pairwise disjoint invariant subsets
P1, P2, . . . , Pk−1 of the set T and an invariant subset Pk of the set Y such that
all automata APi for i ∈ {1, . . . , k} are strongly connected. There is a word
w1 = wAT of length at most |T | − |

⋃k−1
i=1 Pi| such that T.w1 ⊆

⋃k−1
i=1 Pi. There

is a word w2 = wAY of length at most |Y | − |Pk| such that Y.w2 ⊆ Pk.
We apply Lemma 3 to the set Y , the state max(Z) and the word u that

was fixed above. Let w3 = D(Y, u,max(Z)); then the length of w3 is at most
|Z| − |Y | = |Q| − |T | − |Y | and Z.w3 ⊆ Y . Since T is an invariant set we obtain
that Q.w3 ⊆ Y ∪ T .

We obtain that Q.w3w1w2 ⊆ (Y ∪ T )w1w2 ⊆
⋃k

i=1 Pi and the length of the
word w3w1w2 is at most |Q| − |

⋃k
i=1 Pi|. Thus, the word w3w1w2 can be chosen

to play the role of wA from the formulation of the proposition. ��

3 Proof of Theorem 1

Let A = 〈Q,Σ, δ〉 be a mortal partially monotonic automaton. Then any δ( , a)
with a ∈ Σ is an order preserving partial transformation on the set Q. Each order
preserving partial transformation can be extended to the whole set Q so that the
resulting total transformation remains order preserving. Do such completions (in
an arbitrary way) for all transformations δ( , a) with a ∈ Σ. Then we obtain a
monotonic automaton B = 〈Q,Σ, ζ〉.

We mark every element q ∈ Q such that δ(q, a) is not defined for some letter
a ∈ Σ. Observe that each invariant set of the automaton B contains a marked
element. Indeed, in the opposite case we can find an invariant set I without
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marked elements. It means that the restriction AI is a complete automaton,
hence δ(q, w) is defined for any q ∈ I and w ∈ Σ∗. It contradicts to the assump-
tion that the automaton A is mortal.

Let k be a rank of the automaton B. We apply Proposition 3 to this au-
tomaton. We find the pairwise disjoint invariant subsets P1, P2, . . . , Pk of the set
Q such that all automata BPi for i ∈ {1, . . . , k} are strongly connected and the
word wB of length at most |Q|− |

⋃k
i=1 Pi| such that ζ(q, wB) ∈

⋃k
i=1 Pi for any

q ∈ Q. Observe that all sets P1, P2, . . . , Pk are ‘half-invariant’ in the automaton
A in the following sense: there is no elements x ∈ Pi and y �∈ Pi such that
δ(x,w) = y for some word w ∈ Σ∗.

For each i ∈ {1, . . . , k} we apply Proposition 1 to the automaton BPi and a
marked element pi ∈ Pi. We find a word wi of length at most 3

2 (|Pi| − 1) such
that ζ(q, wi) = pi for any q ∈ Pi. Since the state pi is marked there is a letter
ai ∈ Σ such that δ(pi, ai) is not defined.

Consider the word v = wBw1a1w2a2 · · ·wkak. For any q ∈ Q we then have
ζ(q, wB) ∈ Pi for some i ∈ {1, . . . , k}. Hence ζ(q, wBw1a1 . . . wi) = pi. It means
that either δ(q, wBw1a1 . . . wi) = pi or δ(q, wBw1a1 . . . wi) is not defined. In
both cases δ(q, wBw1a1 . . . wiai) is not defined. Therefore δ(q, v) is not defined
for any q ∈ Q. Thus, v is a killer word for the automaton A .

The length of the word v is at most

|Q| − |
k⋃

i=1

Pi|+
k∑

i=1

(
3
2
(|Pi|−1)+1

)

= |Q| − |
k⋃

i=1

Pi|+
k∑

i=1

|Pi|+
k∑

i=1

(
1
2
(|Pi|−1)

)

= |Q|+
k∑

i=1

(
1
2
(|Pi|−1)

)

= |Q| − k

2
+

1
2

k∑
i=1

|Pi| ≤ |Q| −
1
2

+
1
2
|Q|

= |Q|+ 1
2
(|Q| − 1),

whence the length of the word v is at most |Q|+ "(|Q| − 1)/2# as required. The
theorem is proved.

4 The Tightness of the Bound

We present a series of examples of partially monotonic automata An = 〈Q,Σ, δ〉,
where n = 6, 7, . . . , such that the automaton An is killed by a word of length
|Q| + "(|Q| − 1)/2# but is not killed by any shorter word. The state set Qn of
the automaton An is the chain 1 < 2 < 3 < · · · < n. We denote "(n + 1)/2# by
�. The input alphabet Σ of An contains two letters a and b.
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The action of the letter a on the set Qn is defined as follows:

δ(j, a) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if j = 1,
� if j = � + 2,
is not defined if j = � + 1,
j − 1 in all other cases.

The action of the letter b is defined as follows:

δ(j, b) =

{
n if j = n,

j + 1 in all other cases.
The following picture shows the automaton A9.

Fig. 1. The automaton A9

It is easy to verify that the automata An are indeed partially monotonic and
that the word wn = an−2b�a kills the automaton An for each n. The proof that
the automaton An has no killer word of length less than n+ �− 1 is far too long
to be reproduced here.
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Abstract. In a preceding article, we have studied the family of words
derivated from characteristic Sturmian words. This study has lead to a
new proof of the characterization of characteristic Sturmian words which
are fixed points of morphisms. In this article, we extend this approach to
all Sturmian words. The Sturmian words viewed as dynamical systems
play an important role in obtaining this generalization.

1 Introduction

The concepts of return words and derivated words were introduced independently
by Durand in [8], and by Holton and Zamboni in [9]. Given a word x and a factor
w of x, a return word of w in x is a word that starts at an occurrence of w and
ends exactly before the next occurrence of w. The derivated word Dw(x) encodes
the unique decomposition of x in terms of the return words of w.

These concepts have been recently investigated for the family of Sturmian
words. Vuillon has proved in [14] that each factor w of a Sturmian word has
exactly two return words, and that this property characterizes Sturmian words.
In [2] and [3], we have given the exact form of the two return words and the
related derivated words. This study has been limited to the family of Sturmian
words which are characteristic. That permitted to answer negatively a question
posed by Michaux et Villemaire in [13], and to propose a new proof for the
characterization of characteristic words which are fixed points of morphisms
given in [7]. In [10], Justin and Vuillon have studied the return words in Sturmian
and episturmian words.

In this article, we extend our study to the family of all Sturmian words. In
Section 2, we recall some basic notions on Sturmian words, in particular the dy-
namical system Sα formed by all the Sturmian words with slope α. We introduce
in Section 3 the notions of return words and derivated words in the context of
Sturmian words. We recall the results obtained in [2], [3] for characteristic words.
Among these results, let us mention that words derivated from a characteristic
word are again characteristic, and that a characteristic word is a fixed point of
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a morphism if and only if it can be derivated from itself. In Section 4, we show
that if the characteristic word sα with slope α has a derivated word equal to
the characteristic word sβ with slope β, i.e., Dw(sα) = sβ, then the derivation
operator Dw defines a map from the dynamical system Sα onto the dynamical
system Sβ . Conversely if a morphism ϕ verifies ϕ(sβ) = sα, then it defines a map
from Sβ into Sα which is in a certain sense the inverse image of some derivation
operator Dw. In Section 5, we state and prove adequate generalizations of the
two theorems given in [3]. For instance, the characterization of characteristic
words which are fixed points of morphisms is generalized to all Sturmian words
in the following way. Given a Sturmian word x with slope α, there exists a mor-
phism ϕ such that ϕ(x) has the same slope α if and only if there exists a word
Dw(x) derivated from x with slope α.

2 Sturmian Words

In this section we recall some basic notions on Sturmian words. The interested
reader is referred to Chapter 2 in [12] and the survey [5] for more details. Refer-
ence [1] also contains two chapters on the subject.

There are several ways to define Sturmian words. We begin with the definition
of particular Sturmian words which are the characteristic words. Let α be an
irrational number such that 0 < α < 1, and let [0, a1 + 1, a2, . . . , an, . . .] be
its continued fraction expansion (a1 ≥ 0 and an ≥ 1 for all n ≥ 2). Then the
characteristic word sα with slope α is defined by

sα = lim
n→∞

tn

where the finite words tn are inductively defined by

t0 = 0, t1 = 0a11, tn = tan
n−1tn−2 (n ≥ 2).

The sequence (tn)n is called the characteristic sequence associated with sα
1. It

is usual to define t−1 = 1 in a way to write t1 = ta1
0 t−1. We also associate to

sα the sequence (qn)n of the lengths of the words tn. Clearly (qn)n is given by
q0 = 1, q1 = a1 + 1, and qn = anqn−1 + qn−2(n ≥ 2).

Let us now introduce the notion of Sturmian words. We begin with some
useful notations : Pref(x) (resp. Fact(x)) is the set of prefixes (resp. factors) of a
word x ∈ {0, 1}ω. These notations are naturally extended to subsets X ⊆ {0, 1}ω.
Consider

Sα = {x ∈ {0, 1}ω | Fact(x) = Fact(sα)}
the dynamical system generated by the characteristic word sα of slope α. Every
element of Sα is called a Sturmian word of slope α. The dynamical system Sα

can also be defined as the topological closure of the set

Rα = {Si(sα) | i ≥ 0},
1 Notice that the first letter of sα depends on the value a1 in the continued fraction

expansion [0, a1 + 1, a2, . . .] of α. Indeed, it is equal to 0 if a1 > 0, and equal to 1 if
a1 = 0
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where S is the shift, and the closure of Rα is equal to {x ∈ {0, 1}ω | Pref(x) ⊆
Pref(Rα)}. The following property can be proved.

Proposition 1. Let x, y ∈ {0, 1}ω. If x is a Sturmian word of slope α and
Fact(y) ⊆ Fact(x), then y is a Sturmian word. Moreover Fact(y) = Fact(x) and
y has slope α.

Example 1. Consider the characteristic word sα, where α has the continued frac-
tion expansion [0, 3, 2, 3, 2, 3, 2, . . .]. The first elements of the characteristic se-
quence are t0 = 0, t1 = 001 and t2 = 0010010. The word

0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0

is a prefix of sα. The set Rα is formed by all the suffixes of sα. It is known that
0sα, 1sα ∈ Sα (see [12]). Each of these words belong to Sα \Rα, otherwise they
are periodic, in contradiction with the irrationality of α.

3 Return Words and Derivated Words

In this section, we recall the notions of return word and derivated word in the
context of Sturmian words. These notions were first defined by Durand in [8],
and Holton and Zamboni in [9].

Given a non empty factor w of a Sturmian word x = x0x1 · · ·xn · · · (with
xn ∈ {0, 1} for all n), an integer i is said to be an occurrence of w in x
if w = xixi+1 · · ·xi+|w|−1. For adjacent occurrences i, j of w in x, the word
xixi+1 · · ·xj−1 is call a return word of w in x. A return word of w has either w
as a prefix, or is a prefix of w (the latter happens when the two occurrences of
w overlap).

In [14], Vuillon has showed that an infinite word x ∈ {0, 1}ω is Sturmian if
and only if each non empty factor of x has exactly two return words (see [10]
for a shorter proof). In [2] and [3], we gave the precise form of these two return
words in the particular case of a prefix w of a characteristic word sα. Their form
is related to the characteristic sequence (tn)n associated with sα and depends
on the length of the prefix w. The return words of characteristic Sturmian and
episturmian words have been also studied in [10], in terms of their palindromic
prefixes (instead of the sequence (tn)n).

Proposition 2. [2, 3] Let sα be a characteristic word with slope α = [0, a1 +
1, a2, . . .]. Let w ∈ Pref(sα) be such that |w| belongs to the interval ]iqn + qn−1−
2, (i + 1)qn + qn−1 − 2], with n ≥ 1 and i ∈ {0, . . . , an+1 − 1}, or n = 0 and
i ∈ {1, . . . , an+1 − 1}. Then the two return words of w are tn and tintn−1.

Notice that the results of Proposition 2 naturally extend to all Sturmian
words in the following way. We recall that a factor w of a Sturmian word x is
left special if 0w and 1w are factors of x. We denote by Left(x) the set of left
special factors of x. It is well-known that x has exactly one left special factor of
each length. Moreover when x is characteristic, Left(x) = Pref(x). Remember
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that Sturmian words that belong to the dynamical system Sα have the same set
of factors. Therefore if tn and tintn−1 are the return words of a prefix w of sα,
then they are the return words of the left special factor w in any Sturmian word
x ∈ Sα.

Corollary 1. Let u, v be the return words of w ∈ Pref(sα) in the characteristic
word sα. Let u′, v′ be the return words of w′ ∈ Left(x) in a Sturmian word
x ∈ Sα. If |w| = |w′|, then w = w′, u = u′ and v = v′.

From now on, we consider return words with respect to the left special factors
of a Sturmian word.

Example 2. We consider the Sturmian word 0sα with slope α = [0, 3, 2, 3, 2, . . .]
(see Example 1). Let us look for the return words of the left special factor w =
001. Occurrences of that factor are underlined. The return words are u = 001
and v = 0010.

0 0 0 1︸︷︷︸
u

0 0 1 0︸ ︷︷ ︸
v

0 0 1︸︷︷︸
u

0 0 1 0︸ ︷︷ ︸
v

0 0 1︸︷︷︸
u

0 0 1 0︸ ︷︷ ︸
v

0 0 1︸︷︷︸
u

0 0 1︸︷︷︸
u

0 0 1 0︸ ︷︷ ︸
v

0 0 1︸︷︷︸
u

0 0 1 0. (1)

These are exactly the return words tn, tintn−1 of Proposition 2 with n = i = 1.

We now introduce the concept of derivated word. Our presentation is a little
more general than in [8].

Let x = x0x1 · · ·xn · · · be a Sturmian word of slope α, and w be a non empty
word in Left(x). Consider u, v the two return words of w in x (or equivalently
in sα). Let us write x = px′ such that the first occurrence of w is equal to |p|.
Then x can be written in a unique way as a concatenation of the words u and v
(excluding the prefix p), that is

x = px′ = pz1z2z3 · · · with zi ∈ {u, v}. (2)

Denote by h(sα) the first letter of sα
2. We define a bijection Δ : {u, v} → {0, 1}

by putting3

Δ(u) = h(sα), and Δ(v) = 1− h(sα). (3)

Then the word
Dw(x) = Δ(z1)Δ(z2)Δ(z3) · · ·

is called the derivated word of x with respect to w. The derivated word Dw(x)
is a renaming by 0 and 1 of the occurrences of u and v in the decomposition of
x in terms of its return words.

We also define the morphism Θ such that

Θ(h(sα)) = u and Θ(1 − h(sα)) = v. (4)
2 Recall that the first letter of sα equals 0 if and only if a1 > 1 in the continued

fraction expansion [0, a1 + 1, a2, . . .] of α
3 This definition of Δ depending on the first letter of sα will be motivated later
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Clearly

Θ(Dw(x)) = x′, (5)

that is, Θ is the “decoding” morphism that allows to recover x′ from Dw(x).
Moreover, if we denote y = Dw(x) = Dw(x′), we have

Dw(Θ(y)) = y. (6)

Note that when w is prefix of x, that is, x = x′, then Θ(Dw(x)) = x.

Example 3. Once again consider the Sturmian word x = 0sα with slope α =
[0, 3, 2, 3, 2, . . .] and the return words u = 001 and v = 0010 computed in Ex-
ample 2. Thus we set Δ(u) = h(sα) = 0 and Δ(v) = 1 − h(sα) = 1. From (1),
we see that the derivated word Dw(x) of x starts with 0101010010 and that
Θ(Dw(x)) = sα = Θ(Dw(sα)).

In [3], we have studied the derivated word of a characteristic word sα with
respect to a prefix w of sα. This study has lead to the characterization of char-
acteristic words which are substitutive, and fixed points of morphisms. These
results are stated in the Proposition 3 and Theorems 1, 2 hereafter. We recall
that an infinite word x ∈ {0, 1}ω is substitutive if it is the image by a literal
morphism of a morphic word, and that x is a morphic word if there exists a
non erasing morphism ϕ such that ϕ(a) = ap with a ∈ {0, 1}, p �= ε, and
x = limn→∞ ϕn(a). We say that a morphism is non trivial if it differs from both
the identity and the morphism E defined by E(0) = 1, E(1) = 0.

The next proposition indicates that the derivated words of a characteristic
word are also characteristic.

Proposition 3. [3] Let sα be a characteristic word with slope α = [0, a1 +
1, a2, a3, . . .]. Let w ∈ Pref(sα) be such that its two return words are tn, t

i
ntn−1,

with n ≥ 1 and i ∈ {0, . . . , an+1 − 1}, or n = 0 and i ∈ {1, . . . , an+1 − 1}. Then
the derivated word Dw(sα) is the characteristic word sβ of slope4

1. [0, an+1 + 1− i, an+2, an+3, . . .] if a1 > 0;
2. [0, 1, an+1 − i, an+2, an+3, . . .] if a1 = 0.

The next corollary is easily proved from this proposition. Given a number
α, we recall that its continued fraction expansion [0, a1 + 1, a2, . . .] is ultimately
periodic if there exist n,m ≥ 1 such that an+k = an+m+k for all k ≥ 1, and we
write it as [0, a1 + 1, . . . , an, an+1, . . . , an+m]. The number α is called a Sturm
number if its continued fraction expansion is of one of the following types:

1. [0, a1 + 1, a2, . . . , an], an ≥ a1 ≥ 1;
2. [0, 1, a1, a2, . . . , an], an ≥ a1.

4 By this proposition, if we denote β = [0, b1 + 1, b2, b3, . . .], we see that a1 > 1 if and
only if b1 > 1 (recall that a1 ≥ 0 and an ≥ 1, for n ≥ 2). In other words, sα and its
derivated words begin with the same letter. This behavior is due to the definition of
Δ depending on the first letter of sα
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Corollary 2. [3] Let sα be a characteristic word with slope α.

1. The continued fraction expansion of α is ultimately periodic if and only if
the set {Dw(sα) | w ∈ Pref(sα), w �= ε} is finite.

2. The number α is a Sturm number if and only if Dw(sα) = sα for some non
empty word w ∈ Pref(sα).

We now state the two announced theorems. The equivalence between (b) and
(c) of Theorem 1 is proved by Durand in [8] in a more general context. The
equivalence between (a) and (c) of Theorem 2 was first proved by Crisp, Moran,
Pollington and Shiue in [7]. Alternative proofs were proposed in [6], [11] and [3].

Theorem 1. For a characteristic word sα, the following are equivalent:

(a) the continued fraction expansion of α is ultimately periodic;
(b) the set {Dw(sα) | w ∈ Pref(sα), w �= ε} is finite;
(c) sα is substitutive.

Theorem 2. For a characteristic word sα, the following are equivalent:

(a) α is a Sturm number;
(b) there exists w ∈ Pref(sα), w �= ε, such that Dw(sα) = sα;
(c) sα is a fixed point of a non trivial morphism.

In this paper, we want to propose adequate generalizations of Theorems 1
and 2 for all Sturmian words.

4 Maps Between Two Dynamical Systems

Let us consider the dynamical system Sα of all Sturmian words of slope α. We
recall that for all x ∈ Sα, Left(x) = Pref(sα). Moreover, we know by Corollary 1
that each x ∈ Sα has the same return words u and v, with respect to a given
prefix w of sα. Hence, the two functions Δ and Θ defined in Section 3 by (3)
and (4) are the same for every x ∈ Sα. Therefore, in the sequel, we will use the
following notation: uα,w, vα,w, Δα,w and Θα,w.

We propose in this section two families of maps between dynamical systems
Sα and Sβ . The properties of these two families will be essential in the proofs of
the next section. We say that a map ϕ : Sα → Sβ respects the structure of the
dynamical systems Sα and Sβ if whenever ϕ(x) = y, then

1. x = sα ⇒ y = sβ;
2. x ∈ Rα \ {sα} ⇒ y ∈ Rβ \ {sβ}.

The first family of maps is related to the derivation operator Dw. Let sα be a
characteristic word and w ∈ Pref(sα). By Proposition 3, Dw(sα) is a character-
istic word; let β be its slope. In the next proposition, we show that the derivated
word Dw(x) of a Sturmian word x of slope α is a Sturmian word of slope β.
Moreover we prove that the Dw operator defines a surjective map between Sα

and Sβ which respects the structure of the two dynamical systems.
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Proposition 4. Let sα be a characteristic word and w ∈ Pref(sα). Let sβ be
the characteristic word such that Dw(sα) = sβ. Then the Dw operator defines
a surjective map from Sα to Sβ that respects the structure of the dynamical
systems.

Proof. 1. Let us first prove that Dw defines a map from Sα to Sβ , that is, for any
x ∈ Sα, the derivated word Dw(x) is a Sturmian word in Sβ . Let us verify that
Fact(Dw(x)) ⊆ Fact(sβ). We will conclude that Dw(x) ∈ Sβ by Proposition 1.

By Proposition 1, Fact(x) = Fact(sα). We consider the unique decomposition
of sα in terms of the return words uα,w and vα,w of w (see (2)), that is, sα =
z1z2z3 · · · with zi ∈ {uα,w, vα,w}. We have Θα,w(Dw(sα)) = Θα,w(sβ) = sα (see
(5)). By (5), we also have Θα,w(Dw(x)) = x′ where x = px′ and |p| is the first
occurrence of w in x.

Let f ∈ Fact(Dw(x)), then Θα,w(f) ∈ Fact(x′) ⊆ Fact(x). As Θα,w(f) is a
concatenation of the return words uα,w and vα,w, it follows that Θα,w(f)w ∈
Fact(x). Therefore Θα,w(f)w ∈ Fact(sα). Notice that this word has w as prefix
and suffix. This implies that Θα,w(f) = zizi+1 · · · zj , for some indices i, j. It fol-
lows that Δα,w(zi · · · zj) = f and f ∈ Fact(sβ). Hence Fact(Dw(x)) ⊆ Fact(sβ).

2. Let us now prove that the map defined by Dw from Sα to Sβ is surjective.
Let y ∈ Sβ and x = Θα,w(y). We are going to show that x ∈ Sα and Dw(x) = y.

By Proposition 1, Fact(y) = Fact(sβ). Remember that Θα,w(sβ) = sα.
We are going to verify that Fact(x) ⊆ Fact(sα). Let f ∈ Fact(x), then there

exists g ∈ Fact(y) such that f is factor of Θα,w(g) and Θα,w(g) ∈ Fact(x). Since
g ∈ Fact(sβ), we have Θα,w(g) ∈ Fact(sα) and thus f ∈ Fact(sα).

By Proposition 1, x is a Sturmian word in Sα. Clearly Dw(x) = y by (6).

3. Finally let us show that Dw respects the structure of the dynamical systems.
Let x ∈ Sα, y ∈ Sβ be such that Dw(x) = y. We already know that Dw(sα) = sβ .
Suppose that x = Si(sα) with S the shift and i ≥ 1. Then it is easy to verify
that Dw(x) = Sk(Dw(sα)) = Sk(sβ) where k ≥ 1 is the number of occurrences
of w in sα less than i.

This completes the proof.

Example 4. Let Sα be the dynamical system with slope α = [0, 3, 2]. Consider
the word w = 001 ∈ Pref(sα). By Proposition 3, Dw(sα) = sβ with β = [0, 2, 3].
It is clear that if x = S7(sα), then Dw(x) = S2(sβ). On the other hand, as we
have seen in Example 3, Dw(0sα) = Dw(sα) = sβ .

In Proposition 4, notice that if α = [0, a1+1, a2, . . .] and β = [0, b1+1, b2, . . .],
then either a1, b1 > 0, or a1 = b1 = 0 (see footnote of Proposition 3). A way
to define a map between two dynamical systems Sα and Sβ such that either
a1 > 0, b1 = 0, or a1 = 0, b1 > 0 is to combine the derivation operator Dw with
the morphism E such that E(0) = 1, E(1) = 0. Indeed

E(sα) = s1−α, (7)

and more generally E(x) is a Sturmian word with slope 1−α if x is a Sturmian
word with slope α (see [12]). Thus E defines a map from Sα to S1−α which is
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bijective and respects the dynamical systems. The way Dw and E commute is
described by the next equality (see [3])

(E ◦Dw)(x) = DE(w)(E(x)). (8)

The second family of maps we want to study is the family of locally charac-
teristic morphisms. We recall that a morphism ϕ is locally characteristic if there
exists a characteristic word x such that ϕ(x) is a characteristic word. It is called
characteristic if ϕ(x) is a characteristic word for all characteristic words x. It is
known that every locally characteristic morphism is characteristic [12].

Notice that every morphism Θα,w is a locally characteristic morphism.

Proposition 5. Let ϕ be a locally characteristic morphism which is non trivial.
Let sα, sβ be characteristic words such that ϕ(sβ) = sα. Then for some non
empty word w ∈ Pref(sα),

ϕ = Θα,w or ϕ = Θα,w ◦ E 5,

and ϕ defines an injective map from Sβ to Sα that respects the structure of the
dynamical systems.

Proof. In [3] (see proof of Theorem 21), we have proved that ϕ(0), ϕ(1) are
the return words uα,w and vα,w of some w ∈ Pref(sα). It follows that either
ϕ = Θα,w, or ϕ = Θα,w ◦ E.

In the first case, Dw(sα) = sβ. The properties of Proposition 5 are then easy
consequences of Proposition 4 and equations (5), (6). Clearly, ϕ defines a map
from Sβ to Sα since Dw defines a map from Sα to Sβ which is surjective. Let
us show that it respects the structure of the dynamical systems. By hypothesis
ϕ(sβ) = sα. Write sβ = x0x1 · · ·xixi+1 · · · (with xn ∈ {0, 1}) and consider
x ∈ Rβ such that x = Si(sβ) = xixi+1 · · · . Define y = Sk(sα) ∈ Rα where k is
equal to |Θα,w(x0x1 · · ·xi−1)|. Then ϕ(x) = y. Finally, ϕ is injective because the
decomposition of a Sturmian word in terms of the return words is unique.

The case ϕ = Θα,w ◦ E is solved similarly. By (7), E(sβ) = s1−β and thus
Θα,w(s1−β) = sα. Hence ϕ defines an injective map from Sβ into Sα that respects
the dynamical systems since E : Sβ → S1−β and Θα,w : S1−β → Sα both respect
the dynamical systems.

To end this section, we give a lemma that will be useful in the next section.
We recall that a morphism ϕ is called locally Sturmian if there exists a Sturmian
word x such that ϕ(x) is a Sturmian word, and that ϕ is Sturmian if ϕ(x) is
a Sturmian word for all Sturmian words x. Moreover, every locally Sturmian
morphism is Sturmian [12].

Lemma 1. Let ϕ be a Sturmian morphism such that ϕ(x) = y with x ∈ Sα and
y ∈ Sβ. Then there exists a characteristic morphism ϕ′ such that ϕ′(x) = y′ and
y′ ∈ Sβ.
5 Let α = [0, a1 + 1, a2, . . .] and β = [0, b1 + 1, b2, . . .]. Then ϕ = Θα,w if a1, b1 > 0 or

a1 = b1 = 0, otherwise ϕ = Θα,w ◦ E
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Proof. Let us recall some properties (see [12]). Consider the morphisms E and

G :
0 �→ 0
1 �→ 01 , G̃ :

0 �→ 0
1 �→ 10 .

These morphisms are Sturmian. If x has slope α, then E(x) has slope 1−α and
G(x), G̃(x) both have slope α

1+α . A morphism ϕ is Sturmian (resp. characteristic)
if and only if ϕ is obtained by composition of E, G and G̃ (resp. of E and G).

Let us now prove the lemma. Given a Sturmian morphism ϕ, suppose that
ϕ(x) = y with x ∈ Sα and y ∈ Sβ . Decompose ϕ = φ1 ◦ φ2 ◦ · · · ◦ φn such
that φi ∈ {E,G, G̃} for all i. Define ϕ′ = φ′

1 ◦ φ′
2 ◦ · · · ◦ φ′

n such that φ′
i = φi if

φi ∈ {E,G}, and φ′
i = G if φi = G̃. Then ϕ′ is a characteristic morphism and

ϕ′(x) has the same slope as ϕ(x).

5 Generalizations

In this section, we propose adequate generalizations of Theorems 1 and 2 to all
Sturmian words. We begin to generalize the second one.

Theorem 3. For a Sturmian word x with slope α, the following conditions are
equivalent:

(a) α is a Sturm number;
(b) there exists a word w ∈ Left(x), w �= ε, such that Dw(x) has slope α;
(c) there exists a non trivial Sturmian morphism ϕ such that ϕ(x) has slope α.

Proof. By Corollary 2, Condition (a) is equivalent to Condition (a′) that there
exists a non empty word w ∈ Pref(sα) such that Dw(sα) = sα.

(a′)⇔ (b) Suppose that Condition (a′) holds. By Proposition 4, the word Dw(x)
belongs to Sα and thus has slope α. Hence Condition (b) holds.

Conversely suppose that there exists a non empty word w ∈ Left(x) such
that Dw(x) has slope α. Again by Proposition 4, Dw(sα) has slope α, that is
Dw(sα) = sα. This proves Condition (a′).

(a′) ⇔ (c) If Condition (a′) is satisfied, then Θα,w(sα) = sα (see (5)). We apply
Proposition 5 with ϕ = Θα,w. Hence ϕ defines a map from Sα into itself, showing
that ϕ(x) has slope α. Therefore Condition (c) holds.

Conversely suppose that there exists a non trivial Sturmian morphism ϕ such
that ϕ(x) has slope α. We can suppose that ϕ is characteristic by Lemma 1. By
Proposition 5, ϕ(sα) must be equal to the characteristic word sα. Moreover,
there exists w �= ε such that ϕ = Θα,w

6. In particular, Θα,w(sα) = sα. By (6),
Dw(sα) = sα, showing that Condition (a′) holds.

Let us verify that Theorem 3 is a generalization of Theorem 2. Suppose that
x = sα. By Proposition 3, Dw(x) is a characteristic word. Since Dw(sα) has

6 The other case ϕ = Θα,w ◦ E cannot occur since x and ϕ(x) have the same slope
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slope α, we get Dw(sα) = sα. Therefore Condition (b) is equivalent to say that
Dw(sα) = sα for some w ∈ Pref(sα), w �= ε. In Condition (c), we can suppose
that ϕ is characteristic by Lemma 1. Since x = sα, it follows that ϕ(x) is a
characteristic word with slope α, that is, ϕ(sα) = sα. Hence Condition (c) is
equivalent to say that sα is the fixed point of a non trivial morphism ϕ.

When x ∈ Rα \ {sα}, we can rephrase Theorem 3 thanks to Propositions 4
and 5. Indeed, Condition (b) is replaced by the existence of w ∈ Left(x), w �= ε,
such that Dw(x) ∈ Rα\{sα}. Similarly, Condition (c) is replaced by the existence
of a non trivial Sturmian morphism ϕ such that ϕ(x) ∈ Rα \ {sα}.

We now turn to the generalization of Theorem 1.

Theorem 4. For a Sturmian word x with slope α, the following conditions are
equivalent:

(a) the continued fraction expansion of α is ultimately periodic;
(b) there exist a Sturmian word y and two non empty words w ∈ Left(x), w′ ∈

Left(y) such that y, Dw(x) and Dw′(y) have the same slope;
(c) there exist a Sturmian word y and two non trivial Sturmian morphisms ϕ, ψ

such that
- x and ψ(y) have the same slope,
- y and ϕ(y) have the same slope.

Proof. (a) ⇔ (b). Let α = [0, a1 + 1, a2, . . .]. In this part of the proof, we only
treat the case a1 > 1, the other being similar.

Suppose that α is ultimately periodic, that is, there exist n,m ≥ 1 such that
an+k = an+m+k for all k ≥ 1. By Proposition 3, let us consider w,w1 ∈ Pref(sα)
such that Dw(sα), Dw1(sα) have slope respectively equal to [0, an+1+1, an+2, . . .]
and [0, an+m+1 + 1, an+m+2, . . .] (it is the same slope, say β). It follows that
Dw(sα) = Dw1(sα) = sβ. Moreover, again by Proposition 3, there exists w′ ∈
Pref(Dw(sα)) such that Dw′(Dw(sα)) = Dw1(sα), that is, Dw′(sβ) = sβ. We
define y = Dw(x). By Proposition 4, y and Dw′(y) have the same slope β.

Conversely, suppose that Condition (b) holds. Let β be the slope of y. By
using Proposition 4, since Dw(x) has the same slope as y, we have that Dw(sα) =
sβ . Moreover, as Dw′(y) also has slope β, then Dw′(sβ) = sγ with β = γ. On
the other hand, by Proposition 3, we have β = [0, an+1 + 1 − i, an+2, . . .] for
some n, i, and γ = [0, an+m+1 + 1 − j, an+m+2, . . .] for some m, j. Since m ≥ 1
and β = γ, it follows that the continued fraction expansion of α is ultimately
periodic.

(b) ⇔ (c) Suppose that there exist a Sturmian word y and two non empty words
w ∈ Left(x), w′ ∈ Left(y) such that y, Dw(x) and Dw′(y) with the same slope β.
By Theorem 3, there exists a non trivial Sturmian morphism ϕ such that y and
ϕ(y) have the same slope β.

By (2) and (5), we have x = px′ such that Θα,w(Dw(x)) = x′. Notice that
x′ has slope α. We define ψ = Θα,w. By Proposition 5, as Dw(x), y ∈ Sβ , then
x′, ψ(y) ∈ Sα. Thus x and ψ(y) have the same slope. Hence Condition (c) holds.
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Conversely suppose that there exist a Sturmian word y of slope β and two
non trivial Sturmian morphisms ϕ, ψ such that x, ψ(y) ∈ Sα and y, ϕ(y) ∈ Sβ .
We can suppose that ψ is characteristic by Lemma 1.

By Theorem 3, there exists w′ ∈ Left(y) such that Dw′(y) has slope β. By
Proposition 5, we have that ψ(sβ) = sα. Moreover there exists w ∈ Pref(sα)
such that either ψ = Θα,w or ψ = Θα,w ◦ E. Suppose first that ψ = Θα,w. By
Proposition 4, as x, ψ(y) ∈ Sα, then Dw(x), Dw(ψ(y)) = y ∈ Sβ . It follows that
Condition (b) holds.

Now if ψ = Θα,w ◦E, we define y′ = E(y) and w′′ = E(w′). To get Condition
(b), let us show that y′, Dw(x), Dw′′(y′) all have slope 1 − β. Due to the form
of ψ, Dw defines a map from Sα to S1−β . Recall that E defines a map from Sβ

to S1−β . It follows that y′, Dw(x) ∈ S1−β . Finally since y,Dw′(y) ∈ Sβ , we have
y′, Dw′′(y′) ∈ S1−β by (8).

Let us now show that this theorem generalizes Theorem 1. Suppose that
x = sα. Let us consider Condition (c). By Lemma 1, the two morphisms ψ and
ϕ can be supposed to be characteristic. By Proposition 5, if y has slope β, then
ϕ(sβ) = sβ . Moreover ψ(sβ) = sα. Therefore, sα is the image by the morphism
ψ of the morphic word sβ . Notice that ψ is not necessarily literal. Nevertheless,
it is proved in [8] that the image by a non erasing morphism of a morphic
word is a substitutive word. Hence Condition (c) is equivalent to say that sα is
substitutive. Let us now consider Condition (b). When x = sα, this means that
Dw(sα) = sβ for some slope β and Dw′(sβ) = sβ (see Proposition 4). As done
in the previous proof (part (b) ⇒ (a)), it follows that the continued fraction of
α is ultimately periodic. Thus by Corollary 2, Condition (b) is equivalent to the
finiteness of the set {Dw(sα) | w ∈ Pref(sα), w �= ε}.

To end this section, let us compare Condition (b) in Theorem 1 and Condition
(b) in Theorem 4. When x = sα, we have just proved that they are equivalent.
The next proposition indicates that this is also true for x ∈ Rα.

Proposition 6. Let x be a Sturmian word in Rα. Then the continued frac-
tion expansion of α is ultimately periodic if and only if the set {Dw(x) | w ∈
Pref(sα), w �= ε} is finite.

Proof. Suppose that x = Si(sα) with i ≥ 0. Let w ∈ Pref(sα) and β be such
that Dw(sα) = sβ . We recall (see part 3. in the proof of Proposition 4) that
Dw(x) = Sk(sβ) where k ≥ 0 is the number of occurrences of w in sα less than i.
In particular, k is bounded by i. The proof is completed thanks to Corollary 2.

The equivalence of Proposition 6 is no longer true for x ∈ Sα \Rα. We were
able to construct a counter-example thanks to a very nice theorem in [4]: the
Sturmian words of Sα are the infinite developments in a certain numeration
system, under a restrictive condition given by an automaton.

Example 5. Let α = [0, 2]. Given the non ultimately periodic sequence (kn)n

0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, . . .

define
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x = 0k01ϕ(0k11ϕ(0k21ϕ(. . .)))

where ϕ(0) = 01 and ϕ(1) = 001. It is proved in [4] that x is a Sturmian word
of slope α. Moreover, the way x is constructed is related to some “derivates”
closed to the derivated words studied here. We can prove that {Dw(x) | w ∈
Pref(sα), w �= ε} is infinite.
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Abstract. In the case of finite words, a Schützenberger theorem proves
that the star-free sets are exactly the languages recognized by finite ape-
riodic semigroups. This gives an algebraic characterization of star-free
sets. The variety theorem of Eilenberg offers a general framework for
the algebraic characterization of recognizable sets: it establishes a one-
to-one correspondence between varieties of languages of finite words and
pseudo-varieties of algebras. This paper contains extensions of those two
well-known results to words on countable scattered linear orderings.

1 Introduction

In the finite words case, the algebraic characterization is a powerful tool for the
study of rational sets of words. The rational sets are algebraically defined as
the sets recognized by finite semigroups. Furthermore, a canonical semigroup,
called syntactic, can be attached to any recognizable language. The algebraic
properties of this semigroup can be used to characterize classes of rational sets. In
this direction, Eilenberg [8] has established a one-to-one correspondence between
classes of languages and classes of semigroups, known as the variety theorem.
Schützenberger [21] was the first to consider the class of rational sets of finite
words whose syntactic algebras are both finite and aperiodic (without non-trivial
groups). This particular sub-class of the rational sets, called star-free, is definable
by a sub-class of rational expressions, without star iteration but with boolean
operations and finite product. Schützenberger has proved that a language is
star-free if and only if its syntactic semigroup is finite and aperiodic. The star-
free sets play an important role in the logical approach of the rational sets of
finite words: the class of rational languages corresponds exactly to the class of
languages definable by monadic second order sentences [7] and the class of star-
free languages is precisely [10] the class of words defined by first-order sentences
equipped with an ordering predicate <.

The algebraic approach is especially interesting for words of infinite length.
Contrary to the finite words case, a minimal automaton can not any more be
attached to a rational set. However, a syntactic algebra can always be attached
to a recognizable language. Informally speaking, algebras for infinite words rec-
ognizability are semigroups equipped with a product adapted to the length of
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words. When they have a finite number of elements, such algebra can always be
finitely described, even if the description of an infinite product is infinite.

The Eilenberg correspondence was extended to words indexed by all the
naturals integers (ω-words) by Wilke [22], and to the countable ordinals case by
Bedon and Carton [2, 5]. Schützenberger’s theorem was also extended to ω-words
by Perrin [12], to bi-infinite words by Perrin and Pin [14], to words indexed by
countable ordinals by Bedon [3, 4] and to words on scattered linear orderings of
finite ranks by Rispal [18].

Rational sets of words on linear orderings have been recently introduced by
Bruyère and Carton [6], and their algebraic approach by Rispal and Carton [18,
19]. They have defined a generalization of semigroups, called $-semigroups, where
the product of any sequence indexed by a scattered ordering is defined. The
main results of this paper is an adaptation of the theorems of Eilenberg and
Schützenberger to sets of words indexed by countable and scattered linear or-
derings. This is a first step in the classification of such languages according to
the algebraic properties of their syntactic algebras. Those extensions incorporate
all the others.

The paper is organized as follows. Section 2 is an introduction to words
and rational sets on linear orderings. The $-semigroups are presented in Sec-
tion 3. Star-free sets are introduced in Section 4: we show that a set of words
on scattered linear orderings is star-free if and only if it is recognized by a finite
aperiodic $-semigroup. The proof that any star-free set is recognized by a finite
aperiodic $-semigroup uses an adaptation of the product of Schützenberger of
two semigroups. Conversely, we prove that any set recognized by a finite aperi-
odic $-semigroup S is star-free using an induction on the D-structure of S. We
deduce that a rational set is star-free if and only if its syntactic $-semigroup is
finite and aperiodic. Section 5 is devoted to varieties and Section 6 concludes.

2 Words on Linear Orderings

This section recalls basic definitions on linear orderings but the reader is referred
to [20] for a complete introduction. Hausdorff’s characterization of countable
scattered linear orderings is given and words indexed by linear orderings are
introduced.

Let J be a set equipped with an ordering <. The ordering J is linear if for
any j and k in J , either j < k or k < j. Let A be a finite set called alphabet. A
word x = (aj)j∈J indexed by a linear ordering J is a function from J to A. J is
called the length of x. For instance ω is the length of right-infinite words a0a1...
and ζ is the length of bi-infinite words ...a−1a0a1... . The empty word ε is the
only word of length 0.

2.1 Product of Words Indexed by Linear Orderings

For any linear ordering J , we denote by −J the backward linear ordering that
is the set J equipped with the reverse ordering. For instance, −ω is the linear
ordering of negative integers.
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The sum J + K of two linear orderings is the set J ∪K equipped with the
ordering < extending the orderings of J and K by setting j < k for any j ∈ J
and k ∈ K. Formally, the sum

∑
j∈J

Kj is the set of all pairs (k, j) such that

k ∈ Kj equipped with the ordering defined by (k1, j1) < (k2, j2) if and only if
j1 < j2 or (j1 = j2 and k1 < k2 in Kj1).

The sum of linear orderings helps to define the product of words. Let J
be a linear ordering and let (xj)j∈J be words of respective length Kj for any
j ∈ J . The word x =

∏
j∈J

xj obtained by concatenation of the words xj with

respect to the ordering on J has length L =
∑
j∈J

Kj . For instance, if for any

j ∈ ω, we denote by xj = aωj

, then x =
∏

j∈ω

xj is the word x = aωω

of length∑
j∈ω

ωj = ωω. The sequence (xj)j∈J of words is called a J-factorization of the

word x =
∏

j∈J

xj . Let x =
∏
i∈ω

xi an ω-factorization. Another factorization x =∏
i∈ω

yi is called a superfactorization if there is a sequence (ki)i∈ω of integers such

that y0 = x0 . . . xk0 and yi = xki−1+1 . . . xki for all i ≥ 1. Let J ∈ S and E be a
set of words. Then EJ is the set composed of the words u such that u =

∏
j∈J uj

with uj ∈ E for any j ∈ J .

2.2 Scattered Linear Orderings

A non-empty linear ordering J is dense if for any j and k in J such that j < k,
there exists an element i of J such that j < i < k. It is scattered if it contains
no dense subordering. The ordering ω of natural integers and the ordering ζ of
relative integers are scattered. More generally, ordinals are scattered orderings.
We denote by N the sub-class of finite linear orderings, O the class of countable
ordinals and S the class of countable scattered linear orderings. Hausdorff has
defined the scattered linear orderings using an induction on ordinals. Any scat-
tered linear ordering can be obtained from the finite linear orderings using finite
sums, ω-sums and −ω-sums:

Theorem 1 (Hausdorff [9]). A countable linear ordering J is scattered if and
only if J belongs to

⋃
α∈O

Vα where the classes Vα are inductively defined by:

V0 = {0,1} Vα = {
∑
j∈J

Kj | J ∈ N ∪ {ω,−ω, ζ} and Kj ∈
⋃

β<α

Vβ}

where 0 and 1 are respectively the orderings with zero and one element.

We denote by A� the set of all words over A indexed by countable scattered
linear orderings, without the empty word.

2.3 Rational Sets of Words on Linear Orderings

Bruyère and Carton [6] have introduced rational expressions and automata for
words indexed by countable scattered linear orderings. An automaton on linear
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orderings is a classical finite automaton with additional limit transitions of the
form P−→q or q−→P where P is a set of states.

Rational expressions were also defined in [6] for words on scattered linear
orderings: the class of rational sets is the smallest class containing the letters and
closed under finite product (·), finite union (∪), finite iteration (∗), ω and −ω-
product, countable ordinal iteration (�) and reverse countable ordinal iteration
(−�), and a binary operator $. A Kleene-like theorem has been established for
those words:

Theorem 2 (Bruyère and Carton [6]). A set of words indexed by count-
able scattered linear orderings is rational if and only if it is accepted by a finite
automata.

3 Algebraic Characterization of Rational Sets

In [18, 19], Rispal and Carton have given an algebraic characterization of rational
sets on scattered linear orderings. They have generalized the semigroups to $-
semigroups for those words and proved that a set is rational if and only if it is
recognizable. In this section, we first recall basic algebraic definitions and then
we define the recognizability for those sets of words.

3.1 Algebraic Definitions

A semigroup is a set S equipped with an associative binary product. The semi-
group S in which had been added a neutral element is denoted by S1. An element
e ∈ S is an idempotent if e2 = e and the set of idempotents of S is denoted by
E(S). A pair (s, e) ∈ S × E(S) is right linked (respectively left linked) if se = s
(respectively es = s). Two right linked pairs (s1, e1) and (s2, e2) are conjugated
if there exist a, b ∈ S1 such that e1 = ab, e2 = ba, s1a = s2 and s2b = s1. The
conjugacy relation is an equivalence relation on right linked pairs [11]. Recall
that the Green’s relations are defined from the following preorders:

s ≤R t ⇐⇒ ∃a ∈ S1, s = ta s ≤L t ⇐⇒ ∃a ∈ S1, s = at
s ≤J t ⇐⇒ ∃a, b ∈ S1, s = atb

For any K ∈ {R,L,J }, sKt if and only if s ≤K t and t ≤K s. K is an equivalence
relation. The equivalence class of p ∈ S is denoted by K(p). We also denote
by s <K t iff s ≤K t and not t ≤K s. Recall that the equivalence relation
D = RL = LR is equal to J when S is finite. A semigroup S is aperiodic if
there exists an integer n such that for all s ∈ S, sn = sn+1, or equivalently
(see [16]), for all s ∈ S, R(s) ∩ L(s) = {s}.

3.2 �-Semigroups

The product of semigroups is generalized to recognize sets of words indexed by
countable scattered linear orderings. A $-semigroup is a generalization of an
usual semigroup, equipped with a product adapted to scattered orderings:
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Definition 1. A $-semigroup is a set S equipped with a product π : S�−→S
which maps any word of countable scattered linear length over S to an element
of S:

– for any element s of S, π(s) = s;

– (generalization of associativity) for any word x over S of countable scattered
linear length and for any factorization x =

∏
j∈J

xj where J ∈ S,

π(x) = π(
∏
j∈J

π(xj))

For instance, A� equipped with the concatenation product is a $-semigroup.

Example 1. The set S = {0, 1} equipped with the product π defined for any
u ∈ S� by π(u) = 0 if u has at least one occurrence of the letter 0 and π(u) = 1
otherwise is a $-semigroup.

For any two elements s and t of a $-semigroup (S, π), the finite product
π(st) is merely denoted by st. The notions of sub-$-semigroup, morphism of
$-semigroup, quotient, division and congruence are directly inspired from the
usual algebra (see [1] for example). A $-semigroup (S, π) is said to be finite if S
is finite. Even when S is finite, the function π is not easy to describe because
the product of any sequence has to be given. It turns out that the function π
can be described using a semigroup structure on S with two additional functions
(called τ and −τ) from S to S. This gives a finite description of the function π.

Definition 2. Let S be a semigroup. A function τ : S−→S (respectively −τ :
S−→S) is compatible to the right with S (respectively to the left) if and only
if for any s, t in S and any integer n the following properties hold: s(ts)τ =
(st)τ and (sn)τ = sτ (respectively (st)−τs = (ts)−τ and (sn)−τ = s−τ ).

Compatible functions can be used to describe products in $-semigroups.

Theorem 3 ([18, 19]). Let (S, π) be a finite $-semigroup. The binary product
defined for any s, t in S by s·t = π(st) naturally endows a structure of semigroup
and the functions τ and −τ respectively defined by sτ = π(sω) and s−τ = π(s−ω)
are respectively compatible to the right and to the left with S.
Conversely, let S be a finite semigroup and let τ and −τ be functions respectively
compatible to the right and to the left with S. Then S can be uniquely endowed
with a structure of $-semigroup (S, π) such that sτ = π(sω) and s−τ = π(s−ω).

It is well known that rational sets of finite words are exactly those recognized
by finite semigroups. This result is generalized for words indexed by countable
scattered linear orderings.

Definition 3. Let S and T be two $-semigroups. The $-semigroup T recognizes
a subset X of S if and only if there exist a morphism ϕ : S−→T and a subset
P ⊆ T such that X = ϕ−1(P ). A set X ⊆ A� is recognizable if and only if there
exists a finite $-semigroup recognizing it.
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For any alphabet A, Rec(A�) denotes the set of recognizable subsets of A�.

Theorem 4 (Rispal and Carton [18, 19]). A set of words indexed by count-
able scattered linear orderings is rational iff it is recognizable.

Example 2. Let A = {a, b} and S = {s, t, e, f, 0} be the $-semigroup whose
product is defined by st = e, ts = f , ee = e, ff = f , es = s, ft = t, sf = s,
te = t, eτ = e, e−τ = e, f τ = t, f−τ = s, and where any other product is equal
to 0. Let ϕ : A� → S be the morphism defined by ϕ(a) = s and ϕ(b) = t. Then
S recognizes in particular (ab)� = ϕ−1(e).

3.3 Syntactic �-Semigroups

Contrary to automata, the algebraic characterization associates a canonical ob-
ject, called syntactic $-semigroup, to each rational set. Let S be a $-semigroup
and P ⊆ S. The equivalence relation ∼P is defined for any s,t in S by s ∼P t if
and only if for any integer m,

∀s1, s2, . . . , sm, t1, t2, . . . , tm ∈ S1 , ∀θ1, θ2, . . . , θm−1 ∈ {ω,−ω} ∪ N ,

π(sm(. . . (s2(s1st1)θ1t2)θ2 . . .)θm−1tm) ∈ P

⇐⇒ π(sm(. . . (s2(s1tt1)θ1t2)θ2 . . .)θm−1tm) ∈ P.

Note that m is bounded when S is finite. For each rational set X , the $-semigroup
A�/∼X is the smallest $-semigroup recognizing X in the sense of division. It is
called the syntactic $-semigroup of X and is denoted by S(X).

Proposition 1 ([18, 19]). A subset X of A� is recognizable if and only if the
relation ∼X is a congruence of $-semigroups of finite index.

4 Star-Free Sets

In this section, we define star-free sets of words on scattered linear orderings
and we extend the Schützenberger’s theorem which establishes the equivalence
between languages recognized by aperiodic finite semigroups and star-free sets
of finite words.

Definition 4. Let A be an alphabet. The class SF (A�) of star-free sets of words
on countable scattered linear orderings on A is the smallest set containing all {a}
for a ∈ A and closed under finite union, complement with respect to A� and finite
product.

Example 3. For any alphabet A, (A�)ω = A� \ A�A ∈ SF (A�) and (A�)−ω =
A� \AA� ∈ SF (A�).
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Theorem 5. Let A be an alphabet and X a recognizable subset of A�. The fol-
lowing conditions are equivalent:

1. X ∈ SF (A�),
2. A�/∼X is a finite and aperiodic $-semigroup.

Example 4. Let A = {a, b} and L = (ab)�. The syntactic $-semigroup of L is
given by Example 2. One can easily check its aperiodicity. The language L is a
star-free set, described by the expression:

L = A� \ (A�aaA� ∪A�bbA� ∪ bA� ∪A�a ∪ (A�)ωbA� ∪A�a(A�)−ω)

The remaining of the paper is devoted to a sketch of the proof of Theorem 5.

4.1 From Star-Free Sets to Finite Aperiodic �-Semigroups

In this section, we prove that the class of languages recognized by finite aperiodic
$-semigroups is closed under finite product and boolean operations.

The Schützenberger’s product of two semigroups S and T , denoted by S $ T
is the set S × P(S1 × T 1)× T equipped with the finite product defined by:

(s1, P1, t1) · (s2, P2, t2) = (s1s2, s1P2 ∪ P1t2, t1t2)

where s1P2 = {(s1s2, t2) | (s2, t2) ∈ P2} and P1t2 = {(s1, t1t2) | (s1, t1) ∈ P1}.
An element (s, P, t) of S $ T is represented by the matrix

[
s P
0 t

]
and the finite

product is the product of matrices. For any finite $-semigroups S and T , S $T is
extended to a $-semigroup. The function τ is defined by, for any (s, P, t) ∈ S $T ,[

s P
0 t

]τ

=
[
sτS {(sks′, t′tτT ) | k ∈ N, (s′, t′) ∈ P} ∪ {(sτS , 1)}
0 tτT

]
where τS , τT are respectively the functions compatible to the right with S

and T . The function −τ is defined by symmetrical arguments.

Lemma 1. Let S and T be two finite $-semigroups. The functions τ and −τ
are respectively compatible to the right and to the left with S $ T .

Lemma 1 shows that the $-semigroup S $ T is well defined. Moreover, the
Schützenberger’s product of two finite aperiodic $-semigroups is still aperiodic.

Proposition 2. The set of finite aperiodic $-semigroups is closed under Schüt-
zenberger’s product.

Let ϕ : A�−→S and ψ : A�−→T be two morphisms of $-semigroups. The
morphism ϕ $ ψ defined for any a ∈ A by

ϕ $ ψ(a) =
[
ϕ(a) {(ϕ(a), 1), (1, ψ(a))}

0 ψ(a)

]
satisfies the property of Lemma 2.
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Lemma 2. For any word u ∈ A�,

ϕ $ ψ(u) =
[
ϕ(u) {(ϕ(v), ψ(w)) | u = vw}

0 ψ(u)

]
As a consequence, the class of languages recognized by finite aperiodic $-

semigroups is closed under finite product and boolean operations.

Proposition 3. Any star-free subset of A� is recognized by a finite aperiodic
$-semigroup.

4.2 From Finite Aperiodic �-Semigroups to Star-Free Sets

Let A be an alphabet and S a finite aperiodic $-semigroup. In this section we
prove that a language X recognized by a morphism ϕ : A� → S of $-semigroups
belongs to SF (A�).

As SF (A�) is closed under finite union it suffices to prove that ∀p ∈ S,
ϕ−1(p) ∈ SF (A�).

The proof is by induction on the structure in D-classes of S.
For the induction step, we will assume that ϕ−1(s) ∈ SF (A�) for every

s ∈ S such that p <D s and show that this implies ϕ−1(p) ∈ SF (A�). This is the
technique used in the original proof [21] of the version of Theorem 5 for finite
words, but the proof we present now is an adaptation of the proof from [13]. It
is based on the following property of aperiodic semigroups:

Lemma 3. Let A be an alphabet, S a finite aperiodic $-semigroup and ϕ : A� →
S a morphism of $-semigroups. For any p ∈ S,

ϕ−1(p) =
(
ϕ−1

(
R (p)

)
A� ∩ A�ϕ−1

(
L (p)

))
\

⋃
p≤Dr

ϕ−1(r). (1)

In order to prove that ϕ−1(p) ∈ SF (A�) we show, step by step, that the right
member of the previous equality belongs to SF (A�). The following lemma will
be needed.

Lemma 4. Let A be an alphabet, n an integer and let (Li)1≤i≤n be a family of
star-free sets: for any 1 ≤ i ≤ n, Li ∈ SF (A�). Then ( ∪

1≤i≤n
LiA

�)ω ∈ SF (A�)

and (A� ∪
1≤i≤n

Li)−ω ∈ SF (A�).

In the induction, we also need to prove that, if p <D e and if, for every s
such that p <D s, ϕ−1(s) ∈ SF (A�), then ϕ−1(e)ω is a star-free set:

Lemma 5. Let S be a finite $-semigroup, p ∈ S and ϕ : A� → S be a morphism
of $-semigroups. Assume that ϕ−1(s) ∈ SF (A�) for every s ∈ S such that p <D
s, and let e be an idempotent of S such that p <D e. Then ϕ−1(e)ω ∈ SF (A�)
and ϕ−1(e)−ω ∈ SF (A�).

The previous Lemma is a corollary of the following star-free expression.
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Lemma 6. Let A be an alphabet, S a finite $-semigroup and ϕ : A� → S be a
morphism of $-semigroups. For any idempotent e ∈ E(S),

ϕ−1(e)
ω

= (A�)ω \ Z where Z =
⋃
s∈S

e≤Ds

ϕ−1(s)[(A�)ω \
⋃
t∈S
st=e

ϕ−1(t)ϕ−1(e)(A�)ω ].

A similar expression holds for the ϕ−1(e)−ω case.

In order to prove that the right member of the equality (1) is star-free, we first
prove that ϕ−1(R (p))A� and A�ϕ−1(L (p)) are included in star-free expressions
containing also words of ∪p≤Drϕ

−1(r).

Lemma 7. Let A be an alphabet, S a finite $-semigroup, ϕ : A� → S a mor-
phism of $-semigroups and p an element of S. Assume that ϕ−1(s) ∈ SF (A�)
for every s ∈ S such that p <D s. There exists a star-free expression Rp such
that ϕ−1

(
R (p)

)
A� ⊆ RpA

� ⊆ ϕ−1
(
R (p)

)
A� ∪p≤Dr ϕ−1(r). There also ex-

ists a star-free expression Lp such that A�ϕ−1
(
L (p)

)
⊆ A�Lp ⊆ A�ϕ−1

(
L

(p)
)
∪p≤Dr ϕ−1(r).

Then it only remains to prove that
⋃

p≤Dr ϕ−1(r) is a star-free set. We need
the following “elementary expressions” for words decomposition:

Definition 5. Let A be an alphabet, S a finite $-semigroup and ϕ : A� → S a
morphism of $-semigroups. For any s ∈ S, we define Fs by

Fs =
⋃
a∈A

ϕ(a)=s

{a}
⋃

e∈E(S)
eτ =s

ϕ−1(e)ω
⋃

e∈E(S)

e−τ =s

ϕ−1(e)−ω

Lemma 8. Let A be an alphabet, S a finite $-semigroup, ϕ : A� → S a mor-
phism of $-semigroups and p ∈ S. Then⋃

p≤Dr

ϕ−1(r) =
⋃

p≤Dds,sd′

p≤Ddsd′

A�Fdϕ
−1(s)Fd′A�

⋃
p≤Dr

A�FrA
�

⋃
p≤Dd,d′

p≤Ddd′

A�FdFd′A�

We can prove that each union of the right member of the equality is included
in a star-free set which is itself included in

⋃
p≤Dr ϕ−1(r). For any idempotent

e of S, if p <D e, then by Lemma 5, ϕ−1(e)ω ∈ SF (A�). Otherwise, if e D p, by
Lemma 7, there exists a star-free expression Re such that ϕ−1(e)ω ⊆ (ReA

�)ω.
Using the property that two right linked pairs of a same D-class are conjugated
if and only if their first components are R-equivalent, we prove that (ReA

�)ω ⊆
ϕ−1(eτ )∪

⋃
p≤Dr ϕ−1(r). Moreover, by Lemma 4, (ReA

�)ω ∈ SF (A�). Symmet-
rical arguments are used for ϕ−1(e)−ω.

Lemma 9. Let A be an alphabet, S a finite aperiodic $-semigroup, ϕ : A� → S
a morphism of $-semigroups and p ∈ S. If for every s ∈ S such that p <D s,
ϕ−1(s) ∈ SF (A�), then

⋃
p≤Dr ϕ−1(r) ∈ SF (A�).
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Finally,

Proposition 4. Any language of A� recognized by a finite aperiodic $-semigroup
is star-free.

Proof. Let S be a finite aperiodic $-semigroup, ϕ : A� → S a morphism of $-
semigroups and P a subset of S. Since SF (A�) is closed under finite union, we
show that for any p ∈ P , ϕ−1(p) ∈ SF (A�).

For the initial step of the induction, let p ∈ S such that there does not exist
s ∈ S with p <D s. According to Lemma 7, there exist star-free expressions Rp

and Lp such that(
ϕ−1

(
R (p)

)
A� ∩A�ϕ−1

(
L (p)

))
\

⋃
p≤Dr

ϕ−1(r) = (RpA
� ∩A�Lp) \

⋃
p≤Dr

ϕ−1(r).

According to Lemma 9, ∪p≤Drϕ
−1(r) ∈ SF (A�). Finally, Lemma 3 proves that

ϕ−1(p) ∈ SF (A�).
For the induction step, let p ∈ S such that for all s ∈ S, p <D s implies

ϕ−1(s) ∈ SF (A�). The induction hypothesys can be used together with Lem-
mas 7, 9 and 3 to prove, similarly to the initial step, that ϕ−1(p) ∈ SF (A�). �

Propositions 4 and 3 together prove that a set of words on scattered linear or-
derings is star-free if and only if it is recognized by a finite aperiodic $-semigroup.
Since for any rational set X , S(X) divides any $-semigroup recognizing X , this
proves Theorem 5.

5 Varieties

In this section, we extend the Eilenberg one-to-one correspondence between
pseudo-varieties of semigroups and varieties of rational sets of finite words (see [8,
17]) to languages of words recognized by $-semigroups. We first define both
notions of pseudo-variety of $-semigroups and of variety of $-languages. All $-
semigroups considered in this section are finite, except free $-semigroups.

A pseudo-variety of $-semigroups is a class of $-semigroups closed under
division and finite product. We will denote pseudo-varieties of $-semigroups by
bold letters.

Example 5. The class of commutative $-semigroups (satisfying xy = yx) is a
pseudo-variety of $-semigroups.

Before defining the notion of a variety of $-languages, we need the notion of
a residual of a language.

Definition 6. Let S be a $-semigroup, P a part of S, s, t ∈ S1 and θ ∈
{ω,−ω, 1}. The residuals of P are the subsets defined by:

(sP t)−θ = {p ∈ S | (spt)θ ∈ P}
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It may be checked that if X is recognized by a $-semigroup S, all the residuals
of X are also recognized by S. In particular, a rational language has a finite
number of residuals.

Definition 7. A variety of $-language V is a function which associates to any
alphabet A a class A�V of rational $-languages of A� such that:

– for any alphabet A, if L,L′ ∈ A�V, u, v ∈ A� and θ ∈ {ω,−ω, 1} then
L ∪ L′ ∈ A�V, A� \ L ∈ A�V and (uLv)−θ ∈ A�V;

– if ϕ : A� → B� is a morphism of free $-semigroups and L ∈ B�V then
ϕ−1(L) ∈ A�V.

We now use pseudo-varieties of $-semigroups to give a classification of ra-
tional $-languages by means of the properties of their syntactic $-semigroups.
If V is a pseudo-variety of $-semigroups and A an alphabet, we denote by A�V
the set of languages of A� recognized by an $-semigroup of V. Since a variety
of $-semigroups is closed under division, a language X belongs to A�V iff its
syntactic $-semigroup S(X) belongs to V. It is straightforward to verify that if
V is a pseudo-variety of $-semigroups, then V is a variety of $-languages.

We are now able to state the main theorem which extends Eilenberg’s the-
orem to words on countable scattered linear orderings (see [1, p. 65] or [17,
Cor. 4.8]). Its proof essentially mimics the proof for the case of finite words.

Theorem 6 (Correspondence theorem). The map V → V is a bijection
between varieties of $-semigroups and varieties of $-languages.

As an example, the class A of finite aperiodic $-semigroups is a pseudo-
variety of $-semigroups, and the languages whose syntactic $-semigroups belongs
to this pseudo-variety are precisely the star-free sets, which makes up a variety
of languages A.

6 Conclusion

This paper extends to words on countable and scattered linear orderings the
theorems of Eilenberg and Schützenberger on finite words. Those two results are
stated without consideration for the empty word: the empty word can easily be
taken into account with slight modifications.

Historically, the recognizable and the star-free languages of finite words were
the first classes of languages characterized by algebraic properties. A lot of other
sub-classes of recognizable sets have been algebraically characterized since that
time. Such results could be extended to words on linear orderings.

Furthermore, the rational languages can also be characterized by their logical
properties. Büchi [7] proved that a language of finite words is rational if and only
if it is definable by a formula of the weak monadic second order logic equipped
with an ordering predicate <. A logical characterization of the star-free sets
of finite words have been established by McNaughton and Papert [10]: a set is
star-free if and only if it is definable by a formula of the same logic restricted to
first-order. We are working on extensions of those characterizations to words on
countable and scattered linear orderings.
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Abstract. In this paper we consider decidability questions that are re-
lated to the membership problem in matrix semigroups. In particular we
consider the membership of a particular invertible diagonal matrix in a
matrix semigroup and then a scalar matrix, which has a separate geo-
metric interpretation. Both problems have been open for any dimensions
and are shown to be undecidable in dimenesion 4 with integral matrices
and in dimension 3 with rational matrices by a reduction of the Post
Correspondence Problem (PCP). Although the idea of PCP reduction is
standard for such problems, we suggest a new coding technique to cover
the case of diagonal matrices.

1 Introduction

In this paper we consider decidability questions that are related to the member-
ship problem in matrix semigroups. The membership problem for a semigroup
with only one generator (“is a matrix B a power of a matrix A”) was known
as the “orbit problem” and was shown to be decidable (in polynomial time) by
Kannan and Lipton in 1986 [6]. The most natural generalization of the the “orbit
problem” is the membership problem for matrix semigroups, given by a list of
generators.

Problem 1. The membership problem. Let S be a given finitely generated
semigroup of n× n matrices from Zn×n. Determine whether a matrix M belongs
to S. In other words, determine whether there exists a sequence of matrices
M1,M2, . . . ,Mk in S such that M1 ·M2 · · ·Mk = M.

Paterson [9] showed that the problem is undecidable even for 3 × 3 integral
matrices when he considered a special case of the membership problem for matrix
semigroups - the mortality problem (determination of whether the zero matrix
belongs to a matrix semigroup). It was show in [5] that the mortality problem
is undecidable even for a case of two generators where the dimension of the
matrices is at least 24.
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The current research in this area is focused on long standing open problems
in low dimensions such as freeness, membership or vector reachability prolems
for 2 × 2 matrices and on the problems that are open in any dimension, like
the membership problem of a unity matrix in a matrix semigroup [1]. A related
problem, also open at the moment, asks whether the semigroup S contains a
diagonal matrix [2]. In this context, we consider the following problem:
Problem 2. Given a multiplicative semigroup S generated by a finite set of n×n
integer matrices and an invertible diagonal matrix MD. Decide whether the
semigroup S contains the matrix MD.
In this paper we show that above problem is undecidable in dimension 4 and
in case of rational matrices it is undecidable in dimension 3. As a corollary of
the above fact we show that the membership of a scalar invertible matrix is also
undecidable for a 3 × 3 rational matrix semigroup and 4 × 4 integral matrix
semigroup. One of the interpretations for a scalar matrix is geometric scaling
that alters the size of an object. So checking the membership of a scalar matrix
gives us an answer to the following geometric problem:
Problem 3. Scaling problem. Given a finite set of linear transformations and
a scalar k ∈ N. Decide whether it is possible to have a combination of such
transformations that enlarges the size of an object k times.
Both Problem 2 and Problem 3 are shown to be undecidable by a reduction of the
Post Correspondence Problem (PCP) to the membership problem in an integral
matrix semigroup. The idea of PCP reduction is quite common in algorithmic
matrix problems [5, 9, 10], but in this paper we use a different technique. In
particular, in the process of coding the words and indices, we design a set of
matrices in such a way that only the correct order of matrix products leads to
a particular matrix in a semigroup. In other words we design the semigroup
generator set as a set of “tiles” that should be connected in the product with
appropriate order, otherwise the product preserves some parts that cannot be
reduced later.

2 Notations and Definitions

In what follows we use traditional denotations N, Z, Z+ and Q for the sets of
naturals, integers, non-negative integers and rationals, respectively.

A semigroup is a pair (S, ·), where S is a set and · is an associative binary
operation on S. A semigroup (S, ·) is generated by a set A of its elements iff
every element of S is a finite product ai1 · ai2 · . . . · aik

where aij ∈ A. The set
of n× n matrices over integers is denoted by Zn×n. It is clear that the identity
element for a semigroup (Zn×n, ·) is the identity matrix that we denote by En

(or E). Minor M j1,...,jl

i1,...,ik
of a matrix M is just the matrix formed from the selected

rows i1, . . . , ik and columns j1, . . . , jl

M =

⎛⎜⎝ a1,1 · · · a1,n

...
. . .

...
an,1 · · · an,n

⎞⎟⎠ Mj1..jl
i1..1k =

⎛⎜⎝ ai1,j1 · · · ai1,jl

...
. . .

...
aik,j1 · · · aik,jl

⎞⎟⎠ .
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We denote an empty word by ε. The concatenation of two strings w and v is
a string obtained by appending the symbols of v to the right end of w, that
is, if w = a1a2 . . . an and v = b1b2 . . . bn then the concatenation of w and v,
denoted by w · v or wv, is a1a2 . . . anb1b2 . . . bn. We denote a word a · a · · ·a︸ ︷︷ ︸

k

by

ak. The reverse of a string is obtained by writing the symbols in reverse order; if
w is a string as shown above, then its reverse wR is an . . . a2a1. The inverse of a
character a is written a−1 and is the unique character such that a · a−1 is equal
to the identity element. For any word w, we define suffn(w) to be the suffix of
length n from the word w.

We also define a notation for use with words called an inverse palindrome.
This is a word in which the second half is equal to the reverse and inverse of the
first half of the word. For example if w is an inverse palindrome, then it can be
written w = z · (zR)−1 for some word z. It is clear that any inverse palindrome
is equal to the identity element.

2.1 Two Mappings Between Words and Matrices

Now we introduce two mappings ψ and ϕ that give us an embedding from words
to matrices. Let us consider the mapping ψ between {0, 1}∗ and 2× 2 matrices:

ψ : ε �→
(

1 0
0 1

)
= E ψ : 0 �→

(
1 2
0 1

)
= M0 ψ : 1 �→

(
1 0
2 1

)
= M1

ψ : w1 · . . . · wr �→Mw1 × . . .×Mwr .

It is a well known fact that the mapping ψ is an isomorphism between {0, 1}∗
and elements of the matrix semigroup generated by 2 × 2 matrices M0 and
M1. Since for every matrix with non-zero determinant there is only one unique
inverse matrix, we can also define a similar mapping ϕ. It can be defined using
inverse matrices of the semigroup generator. Mapping ϕ is also an isomorphism
between {0, 1}∗ and elements of the matrix semigroup generated by 2×2 matrices
{M−1

0 ,M−1
1 }:

ϕ : ε �→
(

1 0
0 1

)
= E ϕ : 0 �→

(
1 −2
0 1

)
= M−1

0 ϕ : 1 �→
(

1 0
−2 1

)
= M−1

1

ϕ : w1 · . . . · wr �→M−1
w1
× . . .×M−1

wr
.

Note that the mappings from w ∈ {0, 1}+ to wR ∈ {0, 1}+ and from ψ(u) to
ϕ(uR) are bijective. Another very useful property of these mapping is that they
can be used to define a free semigroup and group:

Proposition 1. [4, 11] The semigroup or group generated by the pair of matri-
ces ψ(0), ψ(1) is free.

Moreover since the semigroup generated by {ψ(0), ψ(1)} is free we can express
an equality on words in terms of matrix equality:
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Lemma 1. [10] Given two words u, v ∈ X∗, u = v iff ϕ(uR) = (ψ(v))−1.

From Lemma 1 and the fact that matrices ψ(w) and ϕ(w) have inverse ma-
trices (elements) for any word w ∈ {0, 1}∗, the following lemma holds:

Lemma 2. [10] Given a binary alphabet X, a finite sequence of pairs of words
in X∗:

(u1, v1), . . . , (uk, vk)

and a finite sequence of indexes {ij} with {ij ∈ {1..k}}. The word u = ui1 ·. . .·uin

is equal to the word v = vi1 · . . . · vin if and only if

ϕ(uR)× ψ(v) = E.

2.2 Reduced Words and Their Cyclic Permutation

Let Γ = {0, 1, 0−1, 1−1} where 0 ≡ ϕ(0), 1 ≡ ϕ(1), 0−1 ≡ ψ(0) and 1−1 ≡ ψ(1).
For any word, u, such that

u = y1 · y2 · · · yn, (yi ∈ Γ )

we say that u is a reduced word if yi �= y−1
i+1, (1 ≤ i < n), i.e u does not contain

a subword of the type yy−1 for any character y ∈ Γ .
Let P be the semigroup generated by the matrices {ϕ(0), ϕ(1), ψ(0), ψ(1)}

shown above, using multiplication as the associative operator. We define an
isomorphic mapping, ω, from any element of P to its reduced word in Γ :

ω : X2,2 �→ Γ ∗ | X ∈ P

We shall also define |ω(X)| to be the number of characters in ω(X) for any
matrix X. It is clear that ω(E) = ε therefore |ω(E)| = 0. Let ωk(X) denote the
kth symbol of ω(X) and ωF (X) denote the final symbol of ω(X).

For any sequence T = (t1, t2, · · · , tn) we define a k-cyclic permutation (or
k-cyclic shift) to be the result of moving all elements to the right k times with
elements overflowing from the right being inserted to the left. Thus if we shift
this sequence k places to the right we get the sequence suffk(T )·T ·(suffk(T )−1)R

where 0 ≤ k ≤ n.

3 PCP Encoding

In this section we show the idea of reducing the Post Correspondence Problem to
the membership problem for an invertible diagonal matrix. Post’s correspondence
problem (in short, PCP) is formulated as follows: Given a finite alphabet X and
a finite sequence of pairs of words in X∗: (u1, v1), . . . , (uk, vk). Is there a finite
sequence of indexes {ij} with {ij ∈ {1..k}}, such that ui1 · . . .·uim = vi1 · . . .·vim?
PCP(n) denotes the same problem with a sequence of n pairs. Without loss of
generality we assume that the alphabet X is binary.

Let us construct a generator of a matrix semigroup S. For an instance of the
PCP with n pairs of words the generator contains 4n + 2 different matrices.
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1. For each pair (ui, vi), we will create four matrices:
– Matrix of type 1: U1,2

1,2 = ϕ(uR), U3,4
3,4 = ϕ(0i1), U5

5 = 1
– Matrix of type 2: U1,2

1,2 = ϕ(uR), U3,4
3,4 = ϕ(0i1), U5

5 = 2
– Matrix of type 3: V 1,2

1,2 = ψ(v), V 3,4
3,4 = ψ(0i1), V 5

5 = 1
– Matrix of type 4: V 1,2

1,2 = ψ(v), V 3,4
3,4 = ψ(0i1), V 5

5 = 3
2. A single matrix, M, where M1,2

1,2 = E,M3,4
3,4 = ϕ(1),M5

5 = 5
3. A single matrix, N, where N1,2

1,2 = E,N3,4
3,4 = ψ(1), N5

5 = 7

We assign zero to all matrix elements not defined above. Now we state the
reduction lemma and give an example of such an encoding below.

Lemma 3. An instance of PCP has a solution iff the corresponding semigroup
S contains the matrix MD

MD =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 210

⎞⎟⎟⎟⎟⎠ .

Example 1. Given an instance of the PCP, P = ( (101, 1), (0, 01010) ). We will
construct an example of how our coding will represent this problem in a semi-
group and what a solution to the problem will look like.

We are given two separate ‘tiles’ and need to construct a solution to the
PCP. We can see that P1, P2, P1 is one such solution. We will have a semigroup
generator G of ((4 ∗ n) + 2) = 10 matrices G1, G2, . . . , G10 where:

Matrix Number Word part Index Part Factor part

Matrix 1 : G1
1,2
1,2 = ϕ(101) G1

3,4
3,4 = ϕ(01) G1

5,5
5,5 = 1

Matrix 2 : G2
1,2
1,2 = ϕ(101) G2

3,4
3,4 = ϕ(01) G2

5,5
5,5 = 2

Matrix 3 : G3
1,2
1,2 = ϕ(0) G3

3,4
3,4 = ϕ(001) G3

5,5
5,5 = 1

Matrix 4 : G4
1,2
1,2 = ϕ(0) G4

3,4
3,4 = ϕ(001) G4

5,5
5,5 = 2

Matrix 5 : G5
1,2
1,2 = ψ(1) G5

3,4
3,4 = ψ(01) G5

5,5
5,5 = 1

Matrix 6 : G6
1,2
1,2 = ψ(1) G6

3,4
3,4 = ψ(01) G6

5,5
5,5 = 3

Matrix 7 : G7
1,2
1,2 = ψ(01010) G7

3,4
3,4 = ψ(001) G7

5,5
5,5 = 1

Matrix 8 : G8
1,2
1,2 = ψ(01010) G8

3,4
3,4 = ψ(001) G8

5,5
5,5 = 3

Matrix 9(M) : G9
1,2
1,2 = E G9

3,4
3,4 = ϕ(1) G9

5,5
5,5 = 5

Matrix 10(N) : G10
1,2
1,2 = E G10

3,4
3,4 = ψ(1) G10

5,5
5,5 = 7

As stated before, a sequence from P giving a solution of PCP is 1,2,1 thus we
can define the following matrix product Ω = G9 ·G2 ·G3 ·G1 ·G10 ·G6 ·G7 ·G5.
We will now show this gives the requires form of a matrix.

Consider the word part of the matrix first, W (Ω) = E ·ϕ(101) ·ϕ(0) ·ϕ(101) ·
E ·ψ(1) ·ψ(01010) ·ψ(1) = E. Now consider the index part, I(Ω) = ϕ(1) ·ϕ(01) ·
ϕ(001) ·ϕ(01) ·ψ(1) ·ψ(01) ·ψ(001) ·ψ(01) = E. Finally we have the factorization
part as a (integer) product, I(Ω) = 5 ∗ 2 ∗ 1 ∗ 1 ∗ 7 ∗ 3 ∗ 1 ∗ 1 = 210. This is indeed
a matrix is of the required form and is a solution of the above PCP instance.

In the next section we prove Lemma 3 by showing the correctness of the
presented reduction.
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3.1 Correctness of the Reduction

Let S be a semigroup that is constructed by the above rules for an instance of
the PCP problem. We start by showing the word equation coding in minor M1,2

1,2 .
Given a sequence of pairs of words in a binary alphabet A = {0, 1} :

(u1, v1), . . . , (un, vn).

Let us construct the sequence of pairs of 2 × 2 matrices using two mappings ϕ
and ψ: (ϕ(u1), ψ(v1)), . . . , (ϕ(un), ψ(vn)).

Instead of equation u = v we would like to consider a concatenation of two
words uR · v that is a palindrome in the case where u = v. Now we show a
matrix interpretation of this concatenation. We associate 2 × 2 matrix C with
a word w of the form uR · v. Initially we can think that C is an identity matrix
corresponding to an empty word. The extension of a word w by a new pair of
words (ur, vr) (i.e. that gives us w′ = uR

r · w · vr) corresponds to the following
matrix multiplication

Cw′ = CuR
r ·w·vr

= ϕ(uR
r )× Cw × ψ(vr) (1)

According to Lemma 2 u = ui1 · . . . · uin = vi1 · . . . · vin = v for a finite
sequence of indexes {ij} with {ij ∈ {1..k}} if and only if ϕ(uR)× ψ(v) is equal
to the identity matrix. So the question of the word equality can be reduced to
the problem of finding a sequence of pairwise matrix multiplications that gives
us the identity matrix. Note that not only an inverse palindrome but also all its
cyclic permutations are equal to the identity element.

Lemma 4. Any k-cyclic permutation of an inverse palindrome of length n is
a concatenation of two distinct (i.e. non-overlapping) inverse palindromes when
1 ≤ k < n.

Proof. We are given a word w = w1 · w2 · · ·wn which is an inverse palindrome
(i.e. it can be written as w = z · (zR)−1).

For a k-cyclic shift of w we will get a word of the form:

w′ = suffk(w) · w · (suffk(w)R)−1 | 1 ≤ k < n

In an inverse palindrome, element w1 is inverse to wn and w2 is inverse to wn−1

etc. we can see that any cyclic permutation simply changes the order of the
multiplication from left to right (i.e. w1 · wn becomes wn · w1). Each time we
shift right, the first sub-word increases by size 2 whilst the sub-word on the right
decreases by size 2. Thus any cyclic shift of an inverse palindrome gives either
one or two inverse palindromes (depending whether k = n).

Now by the definition of an inverse palindrome, each opposite pair from the
centre outwards is inverse to each other and thus in any such word all elements
cancel to give w = ε. For any k-cyclic shift, we get one or two sub words which are
inverse palindromes. In terms of matrices, this means all such cyclic permutations
produce the identity matrix.
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Since we cannot control the order of a matrix product in the semigroup we
cannot directly apply the idea of pairwise multiplication. So we show that it is
possible to avoid the pairwise matrix multiplications problem by increasing the
dimension from 2 to 5 using the idea of relative matrices for index encoding.

The idea is to design such associated “tiles” for the above matrices that they
disallow any products that cannot be represented as pairwise multiplications. In
particular, a sequence of “tiles” in an incorrect order preserves some parts that
cannot be reduced later.

We show now that using two specially designed minors of 5 dimensional
matrices, M3,4

3,4 and M5
5 , we can guarantee such a property. It is easy to see that

the minor M5
5 controls the exact number of appearences of auxiliary matrices and

the minimum number of main matrices to avoid an empty word solution. This is
achieved by assigning unique prime values to some matrices and by employing
the fundamental theorem of arithmetic regarding prime factorization.

We will now prove that the index coding will only result in the identity
matrix in the case that the matrix multiplication is of the correct form. The
initial conditions of the following lemma are satisfied by the prime factorization
in the last diagonal element of each matrix.

Lemma 5. Let S be a set containing matrices M = ϕ(1), N = ψ(1), Ui =
ϕ(0i1) and Vi = ψ(0i1) where 1 ≤ i ≤ n. Let P be a set of matrices where each
member of P is the product of at least one U and V matrix and exactly one M
and N matrix from set S. The identity matrix is a member of the set P iff it is
a cyclic permutation of the following sequence:

M · Ui1 · Ui2 · · ·Uin ·N · Vin · · ·Vi2 · Vi1

Proof. ⇐ From the definition of the lemma, we know there is 1 matrix of type
M , 1 matrix of type N and at least 1 matrix of type U and V . Thus we will
prove by induction that any multiplication of the above forms gives the identity
element.
Let us prove the base case, when n = 1:

M · Ui1 ·N · Vi1 = ϕ(1) · ϕ(0i11) · ψ(1) · ψ(0i11) = E

Let us consider a matrix multiplication of the form Un+1 ·N · Vn+1:

ϕ(0n+11) · ψ(1) · ψ(0n+11) = ψ(1) = N (1)

We now assume the inductive hypothesis that for any n:

M · Ui1 · · ·Uin ·N · Vin · · ·Vi1 = E

But since we showed in (1) that Un+1 ·N · Vn+1 = N , we can substitute this
into the above expression to get the same result for n+1. Thus this product gives
the identity matrix by the principle of induction.

We now prove that if the above form is equal to the identity matrix, all cyclic
permutations are aswell.
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We can clearly see that in terms of atomic matrices, the given form of matrix
product is an inverse palindrome as defined in lemma 4. This can be seen by
looking at an example:

M · Ui1 · Ui2N · Vi2 · Vi1 = ϕ(10i110i21) · ψ(10i210i11)

But as shown in lemma 4, any cyclic permutation of an inverse palindrome
is equal to two smaller inverse palindromes (except for the trivial case where
we cycle a multiple of the number of matrices and get the original word back).
Further, we showed that inverse palindromes are clearly equal to the identity
element. Thus any cyclic shift of the above sequence gives the identity matrix.
⇒ We now move to the reverse direction of the proof; proving that all identity
elements must be a cyclical permutation of the following form:

M · Ui1 · Ui2 · · ·Uin ·N · Vin · · ·Vi2 · Vi1

We have four different matrix “types”. We shall show that these elements
cannot produce the identity element in any way other than the above form.

We first consider only U and V matrices in a product. We define a sequence
of matrices by (Yi1 , Yi2 , · · · , Yin) where Yi ∈ {Ui, Vi}. For any k, ω1(Uk) = 0
and ωF (Uk) = 1. Similarly, ω1(Vk) = 0−1 and ωF (Vk) = 1−1. Therefore any
multiplication of these matrices will not have any consecutive inverse pairs since
1 · 0−1 �= E and 1−1 · 0 �= E. More formally,∣∣∣∣∣ω

(
n∏

k=1

Yik

)∣∣∣∣∣ =
n∑

k=1

|ω(Yik
)| , Yk ∈ {Uk, Vk} (2)

We will now prove that if we have a matrix sequence containing any con-
secutive products Ui · Vj (similarly for Vj · Ui), it will never be able to be fully
cancelled using just one M and N matrix:

Let X = Ui · Vj where 1 ≤ i, j < n. Given that X = ϕ(0i1) · ψ(0j1) and
ω(X) = 0i1(0−1)j1−1, we can see ω1(X) = 0. Since for all Y ∈ S, ωF (Y ) = 1 or
1−1, no matrix can be pre-multiplied to reduce the length of ω(X). Given that
ωF (X) = 1−1, we can only post multiply by M to reduce the length of ω(X)
because ω1(M) = 1. Therefore Ui · Vj ·M = ϕ(0i1) · ψ(0j) and ω(Ui · Vj ·M) =
0i1(0−1)j . Again, no matrix can be pre-multiplied, but we can post-multiply by
some Uk since only ω1(U) = 0. We have three cases, where (k < j), (k = j)
and (k > j) giving matrices ϕ(0i1) ·ψ(0j−k) ·ϕ(1), ϕ(0i1) and ϕ(0i1) ·ϕ(0k−j1)
respectively. Since ωF of these three matrices equals 1 it can only cancel with an
N matrix. In all cases, there are now either 0 or 0−1 symbols on the right of the
product. It can be seen however that further multiplications by the remaining
U, V matrices will not fully cancel any of these products.

A similar argument holds for X = Vj · Ui. Therefore if any matrix sequence
contains consecutive elements Ui, Vj or Vj , Ui, its product cannot equal the iden-
tity matrix.

We now consider a matrix M in a product. We have four cases to consider.
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1. Given ω(Ui ·M) = 0i11, we see that it cannot be reduced to zero size because
only N cancels with the final symbol leaving Ui and (2) shows that using
only U and V matrices never gives the identity matrix.

2. M · Ui is of the correct form as shown in the first part of the proof.
3. Vi ·M is of the correct form as shown in the first part of the proof.
4. Given ω(M · Vi) = 1(0−1)i1−1. We cannot post-multiply by any remain-

ing matrix type to reduce the number of matrix elements. We can pre-
multiply this product by N but this again leaves only U and V matrices.
Pre-multiplying by Vj gives a product: ω(Vj ·M · Vi) = (0−1)(j+i)1−1, equal
to Vj+i which cannot reduce to zero length because the M matrix has been
used and only M cancels with the last element.

Since each matrix type has an inverse, the same situation occurs with the N
matrix. Therefore any matrix product containing (Ui ·M), (M · Vi), (Vi ·N) or
(N · Ui) will never be able to result in the identity element.

Thus the sequence must of the following form to produce the identity matrix:

· · ·Vi1 ·M · Uj1 · · ·Ujn ·N · Vkm · · ·Vk1 ·M · Ul1 · · ·Ulp ·N · Vhq · · ·

This pattern can repeat indefinitely, but since we only have a single M and
N matrix:

Vim · · ·Vi1 ·M · Uj1 · · ·Ujn ·N · Vkp · · ·Vk1 |m, p ∈ Z+, n ∈ N
Uim · · ·Ui1 ·N · Vj1 · · ·Vjn ·M · Ukp · · ·Uk1 |m, p ∈ Z+, n ∈ N

Since ϕ(1) is only inverse to ψ(1) and each U ,V matrix sequence contains
exactly one of these matrices, the number of U matrices must equal the number
of V matrices, thus m + p = n.

For the first equation, let us define two sub-sequences of matrices α1 =
(Vim , · · · , Vi1 ,M,Uj1 , · · · , Ujm) and α2 = (Uj(n−p+1) , · · · , Ujn , N, Vkp , · · · , Vk1).

Assume the first equation is equal to the identity element. Now assume the
contrary that α1 �= M . There is an equal number of U and V matrices and the
U matrices follow the M matrix therefore the last matrix in the sequence must
be a U matrix. ωF of any U is always 1. If α2 = N then it will cancel with this
element but leave a non-identity element in α1(since α1 �= M). Thus α2 �= N and
since it has an equal number of U and V matrices and the U matrices preceed all
V matrices, the first matrix in the sequence must also be some U matrix. But as
shown in (2) the product of U matrices only increases the size of the sequence.
The reverse argument also holds if α2 �= N . Thus the resulting matrix cannot
be the identity element unless α1 = M and α2 = N .

Define α1[i] to be the i’th element of the sequence. Now we prove that α1[(m+
1)− k] ·α1[(m+1)+ k] = E where (0 ≤ k ≤ m). Let us assume by contradiction
that their exists some k where α1[(m+1)−k] ·α1[(m+1)+k] �= E, i.e. 2 opposite
elements who are not inverse to each other. Therefore we have:

Va ·M · Ub = ψ(0a1) · ϕ(1) · ϕ(0b1) | a �= b

If a > b then it will give a matrix ψ(0a−b) ·ϕ(1). Since M has been used and
N is not in this sequence however, we only have U and V matrices which (2)
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shows cannot reduce the length of |ω(ψ(0a−b) · ϕ(1))| (and |M | = 1). If a < b
then it gives a matrix ϕ(0b−a1) which is equal to U(b−a). Again, since M has
been used, there are only U and V matrices left which cannot reduce to M giving
a contradiction.

Similarly for α2 we get opposite matrices produced which gives the same
result that all opposite matrices from the central element (N) are inverse.

Thus in the first equation given above, it must be of the form:

Vim · · ·Vi1 ·M · Ui1 · · ·Uim · · ·Uin ·N · Vin · · ·Vin−m+1

We can clearly see that this is a cyclic permutation of the form given in the
first part of the proof and the form of equation 2 is a cyclic permutation of
equation 1, thus both must be equal to the identity matrix.

The proof of above lemma ends the proof of reduction from Lemma 3 since
the PCP has a solution if and only if the semigroup S contains the matrix MD.
Thus the following Theorem holds:

Theorem 1. Problem 2 is undecidable in dimension five.

3.2 Reduction to Lower Dimensions

Now we can reduce the dimensions used and state some corollaries.

Corollary 1. Problem 2 is undecidable in dimension 4.

Proof. The element M5
5 , in our previous construction, is a scalar value and is

commutative in all matrices since all other elements along row and column 5 are
zero. Therefore we can multiply minor M3,4

3,4 by M5
5 and we will still preserve this

value across the multiplication without changing the structure of multiplications
of M3,4

3,4 .

Corollary 2. Problem 3 is undecidable for linear transformations defined by a
finite set of integral 4× 4 matrices.

Proof. In order to prove the undecidablity of Problem 3 we can show that the
scalar matrix M = 210 · E4 is undecidable. We use the same idea as we did for
Problem 2 with the only difference being that we extend the generator of the
semigroup by the following matrix R:⎛⎜⎜⎝

210 0 0 0
0 210 0 0
0 0 210 0
0 0 0 1

⎞⎟⎟⎠
It is easy to see that the above matrix commutes with all other matrices in
the semigroup, since the minor M1,2,3

1,2,3 is a scalar matrix and M4
4 is the identity

element. On the other hand we cannot use more than one copy of matrix R since
the determinant of any matrix from a semigroup that uses more than one copy
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of R will be more than 2104. So the matrix M = 210 ·E4 is reachable if and only
if the matrix ⎛⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 210

⎞⎟⎟⎠
is reachable and does not use R, that in turn is undecidable.

In fact we can prove an even stronger claim that membership of any non-
unimodular scalar matrix over rationals is undecidable in dimension four for
rational matrix semigroups.

Corollary 3. Given a semigroup S generated by a finite set of n × n matrices
over rationals and a scalar k ∈ Q such that k �= 1. It is undecidable to check
whether the scalar matrix k · E belonds to S for any n ≥ 4.

Proof. We use Lemma 3 to show the undecidablity of the membership problem
for a scalar matrix k ·E4 by repeating the proof of Corollary 2 and introducing
another matrix R that is now equal to⎛⎜⎜⎝

k 0 0 0
0 k 0 0
0 0 k 0
0 0 0 k

210

⎞⎟⎟⎠ .

We now use the suggestion of an anonymous referee to use our technique
with different bijections ψ and ϕ to get an undecidability result in dimension 3
with rational matrices.

Corollary 4. The problem of determining if a matrix 210 · E3 is a member of
a multiplicative semigroup with rational matrices is undecidable in dimension 3

Proof. We show this result by using a different mapping for φ and ψ which form
a free semigroup. We change this mapping for the separate minors M1,2

1,2 and
M2,3

2,3 . The mapping is such that the central element M2
2 is always equal to 1 for

all but one of the generators. This allows us to merge the two smaller minors
into a single 3*3 matrix.

ψM1,2
1,2

(0)=
(

2 0
1 1

)
ψM1,2

1,2
(1)=

(
2 0
2 1

)
ϕM1,2

1,2
(0)=

(
1
2 0
−1
2 1

)
ϕM1,2

1,2
(1)=

(
1
2 0
−1 1

)

ψM2,3
2,3

(0)=
(

1 1
0 2

)
ψM2,3

2,3
(1)=

(
1 2
0 2

)
ϕM2,3

2,3
(0)=

(
1 −1

2
0 1

2

)
ϕM2,3

2,3
(1)=

(
1 −1
0 1

2

)
All mappings from ε give E2. We can see that any product of the M1,2

1,2

mapping matrices will give a 1 in element M2
2 . Similarly, any product of the

M2,3
2,3 mapping matrices will give a 1 in element M2

2 . These matrices also form
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a free group and we can therefore use them to embed the PCP problem within
a 3*3 matrix as before. However, we must now multiply the whole matrix by
the scalars 2,3,5,7 that were previously in M5

5 . This means we cannot use this
method for an arbitrary scalar matrix but only specific ones (in this case we use
the matrix 210 · E).

4 Conclusion and Some Remarks

In this paper we have proved that the membership problem of a particular in-
vertible diagonal matrix is undecidable for a 4 × 4 integral matrix semigroup.
Then as a corollary of this fact we have shown that the membership of a partic-
ular invertible scalar matrix is undecidable in dimension 4 for an integral matrix
semigroup and in dimension 3 for rational matrix semigroup. Moreover we have
shown that in dimension 4 the membership of any non-unimodular scalar ma-
trix is undecidable for a rational matrix semigroup. The same problems for lower
dimensions and the membership problem for an arbitrary diagonal matrix in a
matrix semigroup are still open.
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1. J.Bestel and J.Karhumäki. Combinatorics on Words - A Tutorial, Bulletin of the
EATCS, February 2003, 178 - 228
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Abstract. In a preceding paper, Bruyère and the second author intro-
duced automata, as well as rational expressions, which allow to deal with
words indexed by linear orderings. A Kleene-like theorem was proved for
words indexed by countable scattered linear orderings. In this paper we
extend this result to languages of words indexed by all linear orderings.

1 Introduction

One of the fundamental results in automata theory is Kleene’s theorem [15] which
asserts the equivalence between sets of words accepted by automata and set of
words described by rational expressions. During the past fifty years Kleene’s the-
orem has been extended to various notions of infinite words, as well as structures
like trees, pictures, and traces.

In [3], Bruyère and Carton introduce automata and rational expressions for
words on linear orderings. These notions unify naturally previously defined no-
tions for finite words, left- and right-infinite words, bi-infinite words, and ordi-
nal words. They also prove that a Kleene-like theorem holds when the orderings
are restricted to countable scattered linear orderings; recall that a linear or-
dering is scattered if it does not contain any dense sub-ordering. This result
extends Kleene’s theorem for finite words [15], infinite words [5, 16], bi-infinite
words [12, 17] and ordinal words [7, 9, 26]. Since [3], the study of automata on
linear orderings was carried on in several papers, that address the emptiness
problem and the containment problem for languages [8, 25], as well as the clas-
sification of rational languages with respect to the rational operations needed to
describe them [4]. More recently, the second author and Rispal [20] proved that
regular languages of words over countable scattered linear orderings are closed
under complementation.

In this paper we come back to Kleene’s theorem, and show that the assump-
tion that the linear orderings are countable and scattered, is not necessary. When
all linear orderings are considered instead of countable and scattered ones, no
change has to be made to the notion of automata already introduced in [3].
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However the set of operators for the rational expressions has to be extended in
order to deal with words indexed by a dense linear ordering. To cope with this
issue, we add a shuffle operator for languages, which is a variant of the classical
shuffle operation on linear orderings. A similar (but not equivalent) notion of
shuffle for languages was already considered in [10, 14, 23]. This operator allows
to extend the definition of rational languages of words, and to prove a general
Kleene-like theorem.

Words indexed by a countable linear ordering were first considered in [10],
where they were introduced as frontiers of labeled binary trees. Some kind of
rational expressions were studied in [10, 14, 23], which lead to a characterization
of words which are frontiers of regular trees.

Other related works can be found in the area of specification and verifica-
tion of real-time systems. Indeed, words indexed by R (or other linear orderings)
appear as a simple and natural way to model the behavior of a finite state
real-time system. For example, ordinal words (called Zeno words) were recently
considered as modeling infinite sequences of actions which occur in a finite in-
terval of time [2, 13]. While the intervals of time are finite, infinite sequences
of actions can be concatenated. A Kleene’s theorem already exists for standard
timed automata (where infinite sequences of actions are supposed to generate
divergent sequences of times) [1]. In [2], automata considered by Choueka and
Wojciechowski are adapted to Zeno words. A kind of Kleene’s theorem is proved,
that is, the class of Zeno languages is the closure under an operation called re-
finement of the class of languages accepted by standard timed automata. More
recently, Dima introduces a notion of real-time automata [11] that captures a
class of timed languages which is closed under complementation and for which
a Kleene’s theorem is proved. Let us finally mention the paper [19] which in-
troduces star-free expressions for words indexed by R, and shows that star-free
languages of words indexed by R coincide with languages definable in some first-
order logic, extending McNaughton-Papert theorem.

The paper is organized as follows: we recall in Sect. 2 some useful defini-
tions related to linear orderings. Sections 3 and 4 respectively introduce rational
expressions and automata for words over linear orderings. Section 5 states the
main theorem and provides a few examples.

2 Linear Orderings

In this section we recall useful definitions and results about linear orderings. A
good reference on the subject is Rosenstein’s book [21].

A linear ordering J is an ordering < which is total, that is, for any j �= k
in J , either j < k or k < j holds. Given a linear ordering J , we denote by −J
the backwards linear ordering obtained by reversing the ordering relation. For
instance, −ω is the backwards linear ordering of ω which is used to index the
so-called left-infinite words.

The sum of orderings is concatenation. let J and Kj for j ∈ J , be linear
orderings. The linear ordering

∑
j∈J Kj is obtained by juxtaposition of the or-
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derings Kj with respect to J . More formally, the sum
∑

j∈J Kj is the set L of
all pairs (k, j) such that k ∈ Kj. The relation (k1, j1) < (k2, j2) holds iff j1 < j2
or (j1 = j2 and k1 < k2 in Kj1). The sum of two orderings K1 and K2 is denoted
K1 + K2.

Two elements j and k of a linear ordering J are called consecutive if j < k
and if there is no element i ∈ J such that j < i < k. An ordering is dense
if it contains no pair of consecutive elements. More generally, a subset K ⊂ J
is dense in J if for any j, j′ ∈ J such that j < j′, there is k ∈ K such that
j < k < j′.

The notion of a cut is needed to define a path in an automaton. A cut of a
linear ordering J is a pair (K,L) of intervals such that J = K ∪L and such that
for any k ∈ K and l ∈ L, k < l. The set of all cuts of the ordering J is denoted
by Ĵ . This set Ĵ can be linearly ordered by the relation defined by c1 < c2 iff
K1 � K2 for any cuts c1 = (K1, L1) and c2 = (K2, L2). This linear ordering can
be extended to J ∪ Ĵ by setting j < c1 whenever j ∈ K1 for any j ∈ J .

The consecutive elements of Ĵ deserve some attention. For any element j
of J , define two cuts c−j and c+

j by c−j (K, {j} ∪L) and c+
j = (K ∪ {j}, L) where

K = {k | k < j} and L = {k | j < k}. It can be easily checked that the pairs of
consecutive elements of Ĵ are the pairs of the form (c−j , c+

j ).
An ordering J is complete if for any cut (K,L) such that K �= ∅ and L �= ∅,

either K has a greatest element or L has a least element.

3 Words and Rational Expressions

Given a finite alphabet A, a word (aj)j∈J is a function from J to A which maps
any element j of J to a letter aj of A. We say that J is the length |x| of the word
x. For instance, the empty word ε is indexed by the empty linear ordering J = ∅.
Usual finite words are the words indexed by finite orderings J = {1, 2, . . . , n},
n ≥ 0. A word of length Jω is usually called an ω-word or an infinite word. A
word of length ζ = −ω + ω is a sequence . . . a−2a−1a0a1a2 . . . of letters which is
usually called a bi-infinite word.

The sum operation on linear orderings leads to a notion of product of words
as follows. Let J and Kj for j ∈ J , be linear orderings. Let xj = (ak,j)k∈Kj be a
word of length Kj , for any j ∈ J . The product

∏
j∈J xj is the word z of length

L
∑

j∈J Kj equal to (ak,j)(k,j)∈L. For instance, the word aζ = b−ωaω of length
ζ is the product of the two words b−ω and aω of length −ω and ω respectively.

We now recall the notion of rational set of words on linear orderings as
defined in [3]. The rational operations include of course the usual Kleene oper-
ations for finite words which are the union +, the concatenation · and the star
operation ∗. They also include the omega iteration ω usually used to construct
ω-words and the ordinal iteration  introduced by Wojciechowski [26] for ordinal
words. Four new operations are also needed: the backwards omega iteration −ω,
the backwards ordinal iteration − , a binary operation denoted $ which is a kind
of iteration for all orderings, and finally a shuffle operation which allows to deal
with dense linear orderings.
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Let us recall the already known rational operations. We respectively denote
by N , O and L the classes of finite orderings, the class of all ordinals and
the class of all linear orderings. For an ordering J , we denote by Ĵ∗ the set
Ĵ \{(∅, J), (J,∅)} where (∅, J) and (J,∅)} are the first and last cut. Given two
sets X and Y of words, define

X + Y = {z | z ∈ X ∪ Y },
X · Y = {x · y | x ∈ X, y ∈ Y },

X∗ = {
∏

j∈{1,...,n} xj | n ∈ N , xj ∈ X},
Xω = {

∏
j∈ω xj | xj ∈ X},

X−ω = {
∏

j∈−ω xj | xj ∈ X},
X� = {

∏
j∈α xj | α ∈ O, xj ∈ X},

X−� = {
∏

j∈−α xj | α ∈ O, xj ∈ X},
X $ Y = {

∏
j∈J∪Ĵ∗ zj | J ∈ L, zj ∈ X if j ∈ J and zj ∈ Y if j ∈ Ĵ∗}.

We use the notation X� as an abbreviation for (X $ ε) + ε.
We now define the new shuffle operation which is needed to deal with dense

orderings.

Definition 1. Let A be a finite alphabet, n ≥ 1, and L1, . . . , Ln ⊆ A�. We
define the shuffle of L1, . . . , Ln, and denote by sh(L1, . . . , Ln) the set of words
w ∈ A� that can be written as w =

∏
j∈J wj where

– J is a complete linear ordering without first and last element;
– there exists a partition (J1, . . . , Jn) of J such that all Ji’s are dense in J ,

and for every j ∈ J , if j ∈ Jk then wj ∈ Lk.

Let us remark that our definition of shuffle slightly differs from others, e.g.
from [14, 23], because in Definition 1 we assume that J is a complete dense
ordering.

Only countable orderings are considered in [14, 23]. Recall that Q is the
unique countable and dense ordering without first and last element. Their defi-
nition of the shuffle operation is based on a partition (J1, . . . , Jn) of Q into dense
subsets J1, . . . , Jn. Then points of each Ji are substituted by words from Li as we
do. Our definition is not a straightforward generalization of this shuffle because
Q is of course not complete. Actually the assumption that J is complete yields
a more general notion of shuffle. The completion of Q yields the ordering R. If
each point of R \ Q is substituted by the empty word, one obtains a shuffle in
the sense of [14, 23]. This shows that our rational expression sh(L1, . . . , Ln, ε)
corresponds to the shuffle of languages L1, L2, . . . , Ln in the sense of [14, 23].

An abstract rational expression is a well-formed term of the free algebra over
{∅}∪A with the symbols denoting the rational operations as function symbols.
Each rational expression denotes a set of words which is inductively defined by
the above definitions of the rational operations. A set of words is rational if it can
be denoted by a rational expression. As usual, the dot denoting concatenation
is omitted in rational expressions.
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Example 1. Consider the word w = (wr)r∈R of length R over the alphabet A =
{a, b}, defined by wr = a if r ∈ Q, and wr = b otherwise. Then it is not difficult
to check that w ∈ sh(a, b). Consider now the word w′ = (w′

q)q∈Q of length Q
over the alphabet A, defined by w′

q = a if q ∈ {m/2n | m ∈ Z, n ∈ N}, and
w′

q = b otherwise. It can be checked that w′ ∈ sh(a, b, ε) but that w′ /∈ sh(a, b)
because Q is not complete.

Example 2. The rational expression a∗(ε + sh(a∗, ε))a∗ denotes the set of words
(over the unary alphabet {a}) whose length is an ordering containing no infinite
sequence of consecutive elements. It is clear that the length of any word denoted
by this expression cannot contain an infinite sequence of consecutive elements.
Conversely, let J be such an ordering. Define the equivalence relation ∼ on J by
x ∼ y iff there are finitely many elements between x and y. The classes of ∼ are
then finite intervals. Furthermore the ordering of these intervals must be a dense
ordering with possibly a first and a last element. This completes the converse.

Example 3. The rational expression (ε+sh(a))$a denotes the set of words (over
the unary alphabet {a}) whose length is a complete ordering. The shuffle oper-
ator is defined using complete orderings and the ordering Ĵ is always complete.
It follows from these two facts that the length of any word denoted by this
expression is complete. Conversely, let J be a complete orderings. Define the
equivalence relation ∼ on J by x ∼ y iff there is an open dense interval contain-
ing both x and y. Each class of ∼ is either a singleton or an open dense interval.
Let K be the ordering of the singleton classes and let L0 be the ordering of the
dense classes. Let L1 be the ordering of pairs of consecutive elements in K and
let L be L0 ∪ L1 equipped with the natural ordering. It can be shown that KL̂.
This gives the expression (ε + sh(a)) $ a where ε is due to L1, sh(a) to L0 and a
to K. This completes the converse.

4 Automata

In this section, we recall the definition given in [3] for automata accepting words
on linear orderings. As already noted in [3], this definition is actually suitable
for all linear orderings.

Automata accepting words on linear orderings are classical finite automata
equipped with limit transitions. They are defined as A(Q,A,E, I, F ), where Q
denotes the finite set of states, A is a finite alphabet, and I, F denote the
set of initial and final states, respectively. The set E consists in three types of
transitions: the usual successor transitions in Q×A×Q, the left limit transitions
which belong to 2Q×Q and the right limit transitions which belong to Q× 2Q.
A left (respectively right) limit transition (P, q) ∈ 2Q×Q (respectively, (q, P ) ∈
Q× 2Q) will usually be denoted by P → q (respectively q → P ).

We sometimes write that an automaton A has transitions P1, . . . , Pm →
q1, . . . , qn when A has all left limit transitions Pi → qj for 1 ≤ i ≤ m and
1 ≤ j ≤ n. Analogously we shall use the notation q1, . . . , qn → P1, . . . , Pm for
right limit transitions.
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A word x = (aj)j∈J of length J is accepted byA if it is the label of a successful
path. A path γ is a sequence of states γ = (qc)c∈Ĵ of length Ĵ verifying the
following conditions. For two consecutive states in γ, there must be a successor
transition labeled by the letter in between. For a state q ∈ γ which has no
predecessor on γ, there must be a left limit transition P → q where P is the
limit set of γ on the left of q. Right limit transitions are used similarly when q
has no successor on γ.

Observe that the ordering Ĵ always has a first element and a last element,
namely the cuts cmin = (∅, J) and cmax(J,∅). For any cut c ∈ Ĵ , define the sets
limc− γ and limc+ γ as follows:

lim
c−

γ = {q ∈ Q | ∀c′ < c ∃k c′ < k < c and q = qk},

lim
c+

γ = {q ∈ Q | ∀c < c′ ∃k c < k < c′ and q = qk}.

A sequence γ = (qc)c∈Ĵ of states is an accepting path for the word x = (aj)j∈J

if the following conditions are fulfilled. For any pair (c−j , c+
j ) of consecutive cuts

of J , the automaton must have the successor transition qc−j
aj−→ qc+

j
. For any

cut c �= cmin which has no predecessor in Ĵ , limc− γ → qc must be a left limit
transition. For any cut c �= cmax in Ĵ which has no successor, qc → limc+ γ must
be a right limit transition. A path is successful if its first state qcmin is initial
and its last state qcmax is final.

Example 4. Let A = {a, b}. The automata A pictured in Fig. 1 has two successor
transitions, three left limit transitions and three right limit transitions. State 0
is the only initial state, and state 5 is the only final state.

Fig. 1. Automaton accepting sh(a, b)

Let us show that this automata accepts words in sh(a, b). Consider indeed a
word w = (wj)j∈J , and assume first that w is accepted by A. Let γ = (qc)c∈Ĵ be
a successful path labeled by w. The ordering J must be dense since there are no
consecutive transitions in A. It must also be complete since there is no state with
incoming left limit transitions and leaving right limit transitions. Occurrences
of both a and b must be dense in J since all limit transitions involve the four
states {1, 2, 3, 4}. Finally, J cannot have a first or a last element. Indeed, the
only transition leaving state 0 is a limit one, and similarly for the only transition
entering state 5.

Conversely, let w = (wj)j∈J be a word indexed by a complete ordering J
such that occurrences of both a and b are dense in J . Since J is complete, any
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cut of J (apart from cmin and cmax) are either preceded or followed by a letter.
Then the sequence γ = (qc)c∈Ĵ defined as follows is a successful path labeled
by w.

– qcmin = 0,
– qcmax = 5,
– qc = 1 if c is followed by an a and qc = 2 if c is preceded by an a,
– qc = 3 if c is followed by a b and qc = 4 if c is preceded by a b.

The construction of an automaton accepting sh(L1, . . . , Ln) from automata
accepting L1, . . . , Ln is a straightforward generalization of the automaton for
sh(a, b) which is pictured in Fig. 1.

5 Rational Expressions vs. Automata

In this section we state the main theorem of the paper, i.e. that automata and
rational expressions define the same languages of words over linear orderings.

Theorem 1. A set of words over linear orderings is rational iff it is recognizable.

This result was proved in [3] for the restricted case of countable scattered
linear orderings. Many arguments still hold in the general case. As in [3], the
only if part of the proof relies upon an induction on the rational expression.
The only modification with respect to the proof of [3] is that we have to show
that the shuffle of rational languages is rational. For the if part of the proof, we
use as in [3] Yamada’s classical technique, i.e. an induction on the set of states
visited by a successful path of the automaton. A key ingredient is the use of
successive condensations of linear orderings.

We illustrate the theorem with a few examples, over the alphabet A = {a, b}.

Fig. 2. Automaton accepting a∗(ε + sh(a∗, ε))a∗

Example 5. The automaton pictured in Fig. 2 accepts the set a∗(ε+sh(a∗, ε))a∗

of words already considered in Example 2.

Example 6. The automaton pictured in Fig. 3 accepts words over {a, b} whose
length is a complete ordering. Since all limit transitions enter state 0 and leave
state 2, the length of an accepted word must be complete. Conversely, let x be
a word of length J where J is a complete ordering. Define the path γ which
maps any cut (K,L) of Ĵ to 0 if K has no greatest element, to 2 if L has no
least element and to 1 otherwise. It is pure routine to check that this defines an
accepting path for x.
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Fig. 3. Automaton accepting words with a complete length

Fig. 4. Automaton accepting words with a non scattered length

Example 7. The automaton pictured in Fig. 4 accepts words over {a} whose
length is a non scattered ordering. Let w = (wj)j∈J be a word labeling a suc-
cessful path γ in A. Let K be the set of positions j such that wj is read by the
transition 1 a−→ 2 in γ. It can be checked that K is a dense subordering of J .
Therefore, the ordering J is not scattered.

For the converse, recall that each linear ordering J can be written J =∑
k∈K Jk where each ordering Jk is scattered and the ordering K is either the

one-element ordering if J is scattered or a dense ordering [21, chap. 4]. From
this decomposition, a word w whose length is not scattered is equal to a product∏

k∈K wk where K is a dense ordering. Then a path γk from state 1 to state 2
labeled by wk can be constructed as follows. Let Jk be the length of wk and let
zk be an arbitrarily chosen element of Jk. Any cut of Jk before zk is mapped to
state 1 and any cut after zk is mapped to state 2. A path labeled by w is finally
constructed as follows. Any cut inside some wk is mapped to the corresponding
state in γk and any remaining gap is mapped to state 0.

6 Conclusion and Open Questions

We considered rational expressions and automata for words indexed by linear
orderings, and prove that these two formalisms capture the same languages.

A natural question is whether the class of recognizable languages is closed
under complementation. It has been proved in [20] that the answer is positive
when one considers only words indexed by countable and scattered orderings
(the proof relies upon semigroup theory). However the answer is negative in the
general case: one can prove that the set of words indexed by a non scattered
ordering is recognizable, while its complement is not.
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The connections between automata over linear orderings and logic would be
interesting to explore. In his seminal paper [5], Büchi proved that recognizable
languages of finite words coincide with languages definable in the weak monadic
second order theory of (ω,<), which allowed him to prove decidability of this
theory. In [6] he proved that a similar equivalence holds between recognizable
languages of infinite words of length ω and languages definable in the monadic
second order theory of (ω,<). The result was then extended to languages of
words indexed by a countable ordinal [7]. What can be said about monadic
second order theories for linear orderings beyond ordinals? Using the automata
technique, Rabin proved in [18] decidability of the monadic second order theory
of the binary tree, from which he deduces decidability of the monadic second
order theory of Q, which in turn implies decidability of the monadic second
order theory of countable linear orderings. On the other hand, Shelah [22] im-
proved model-theoretical techniques [24] that allow him to reprove almost all
known decidability results about monadic second order theories, as well as new
decidability results for the case of linear orderings. On the other hand he proved
that the monadic second order theory of the real line is undecidable. Shelah’s
decidability method is model-theoretical, and up to now no corresponding au-
tomata techniques are known. This led Thomas to ask [24] whether there is an
appropriate notion of automata for words indexed by linear orderings beyond
the ordinals. As mentioned in [3], this question was an important motivation for
the introduction of automata considered in the present paper. It would be in-
teresting to provide a logical characterization of recognizable languages of words
over linear orderings.
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Abstract. We introduce and investigate revolving-input finite autom-
ata, which are nondeterministic finite automata with the additional abil-
ity to shift the remaining part of the input. We consider three different
modes of shifting, namely revolving to the left, revolving to the right,
and circular interchanging. We show that the latter operation does not
increase the computational power of finite automata, even if the number
of revolving operations is unbounded. The same result is obtained for
the former two operations in case of an arbitrary but constant number
of applications allowed. An unbounded number of these operations leads
to language families that are properly contained in the family of context-
sensitive languages, are incomparable with the family of context-free lan-
guages, and are strictly more powerful than regular languages. Moreover,
we show that right revolving can be simulated by left revolving, when
considering the mirror image of the input.

1 Introduction

Finite automata are probably best known for capturing the family of regular
languages. These machines have been intensively studied and moreover, have
been extended in various ways. Examples are pushdown automata [2, 3] or vari-
ants of stack automata [5, 7]. The results obtained for these classes of machines
hold for a large variety of classes of automata, when appropriately abstracted.
This led to the rich theory of abstract families of automata (AFA), which is the
equivalent of the theory of abstract families of languages (AFL); for the general
treatment of machines and languages we refer, e.g. to [4].

We introduce finite automata with the ability to shift the unread input cir-
cularly. From a more general point of view, these machines are finite automata
equipped with an additional operation on the input. Typical formal language
theoretical operations are, for instance, reversal or shift operations on words. Re-
cently, automata with reversals have been investigated in several papers. These
papers led to the devices of flip-pushdown automata [11], the “flip-pushdown

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 168–179, 2005.
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input-reversal” theorem [8], and input-reversal automata [1]. It is worth men-
tioning that these devices induce a hierarchy of languages based on the number of
operations allowed during the computation. Loosely speaking, it was shown that
k+1 pushdown flips are better than k for both deterministic and nondeterminis-
tic flip-pushdown automata [8]. A similar statement has been proven in the con-
text of input-reversal automata [1]. Moreover, input-reversal automata have been
shown to be deeply linked to controlled linear context-free languages [6], leading
to an alternative characterization of Khabbaz hierarchy of languages [9, 10]. But
what about the aforementioned shift operation on the input? Are shift opera-
tions stronger than reversal operations? If not, which are sets of operations that
do lead to certain stronger language families? Which are sets of operations that
are complete in this sense? In the following we distinguish three different modes
of shifting: revolving to the left, revolving to the right, and circular interchanging
(cf. Fig. 1).

a d· · · b · · · c

Left revolving

a d· · · b · · · c

Right revolving

a d· · · b · · · c

Circular interchanging

Fig. 1. Circular input operations

Obviously, if the number of operations applied is zero, the family of regular
languages is characterized. We show that this remains true for circular inter-
changing, even if the number of revolving operations is unbounded, and that
it remains true for revolving to the left or right as long as the number of shift
operations is arbitrarily constant. In case the number of shift operations is not
bounded by a constant, revolving finite automata induce language families which
contain all regular languages, are incomparable (with respect to set inclusion)
with context-free languages, and are properly contained in the family of context-
sensitive languages. To be more precise, we prove that left- and right-revolving
finite automata are somehow asymmetric, since we can show that every linear
context-free language can be accepted by a left-revolving finite automaton, but,
for example, the linear context-free language { anbn | n ≥ 0 } cannot be accepted
by any right-revolving finite automaton. Moreover, right revolving can be sim-
ulated by left revolving, when considering the mirror image of the input. On
the other hand, by pumping arguments we obtain that the family of languages
accepted by left-revolving finite automata and the family of languages accepted
by right-revolving finite automata are incomparable. The used pumping argu-
ments are somehow more involved compared to ordinary pumping arguments
on finite automata, since revolving automata may shift certain symbols around,
thus seeing a symbol more than once during a computation. As a byproduct, it is
shown that neither the family of left-revolving finite automata languages nor the
family of right-revolving finite automata languages is closed under intersection
with regular sets. This is quite surprising, since we are dealing with language
families defined by automata.
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The paper is organized as follows: The next section contains preliminaries and
basics on revolving finite automata. Then Section 3 deals with the computational
power of revolving finite automata in general. After that left- and right-revolving
finite automata are compared in more detail. Finally, we summarize our results
and present some open questions in Section 5.

2 Preliminaries

We denote the powerset of a set S by 2S . The empty word is denoted by λ, the
reversal of a word w by wR, and for the length of w we write |w|. For the number
of occurrences of a symbol a in w we use the notation |w|a. Set inclusion and
strict set inclusion are denoted by ⊆ and ⊂, respectively.

In the following we consider finite automata with the ability to shift the
unread input circularly. We may start with a uniform definition.

Definition 1. A (nondeterministic) extended finite automaton is a 6-tuple A =
(Q,Σ, δ,Δ, q0, F ), where Q is a finite set of states, Σ is the input alphabet, δ
is a mapping from Q × (Σ ∪ {λ}) to 2Q called the transition function, Δ is a
mapping from Q×Σ to 2Q, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting states. Furthermore, A is said to be λ-free, if δ obeys δ : Q×Σ → 2Q.

The different modes are formally distinguished by different interpretations
of the mapping Δ. To this end, we consider configurations of extended finite
automata to be tuples (q, w), where q ∈ Q is the current state and w ∈ Σ∗ is the
yet to be consumed part of the input, where the leftmost letter of w currently
scanned. If a is in Σ ∪ {λ} and w in Σ∗, then we write (q, aw) &A (p, w), if p is
in δ(q, a), for “ordinary” finite automata transitions.

A revolving operation is performed by applying the mapping Δ (cf. Fig. 1).
For a, b ∈ Σ and w ∈ Σ∗,

1. a left-revolving transition is defined by (q, a) &A (p, a) and (q, awb) &A

(p, baw), for p in Δ(q, a),
2. a right-revolving transition is defined by (q, aw) &A (p, wa), for p in Δ(q, a),
3. and a circular-interchanging transition is defined by (q, a) &A (p, a) and

(q, awb) &A (p, bwa), for p in Δ(q, a).

An extended finite automaton A = (Q,Σ, δ,Δ, q0, F ) with left-revolving,
right-revolving, or circular-interchanging transitions is called a left-revolving
finite automaton (left-RFA), right-revolving finite automaton (right-RFA), or
circular-interchanging finite automaton (CIFA), respectively.

As a natural generalization of left-RFA and right-RFA, we also consider
bi-revolving finite automata, where both left- and right-revolving transitions
are possible. Formally, a 7-tuple A = (Q,Σ, δ,Δ�, Δr, q0, F ) is a bi-revolving
finite automaton (bi-RFA), where A = (Q,Σ, δ,Δ�, q0, F ) is a left-RFA and
A = (Q,Σ, δ,Δr, q0, F ) is a right-RFA. Whenever we refer to an automaton
as revolving finite automaton it is either left-, right-, bi-revolving or circular-
interchanging.
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For any revolving finite automaton, whenever there is a choice between an
ordinary or another transition, the automaton nondeterministically chooses the
next move. As usual, the reflexive transitive closure of &A is denoted by &∗A. The
subscript A will be dropped from &A and &∗A whenever the meaning remains
clear. Let k be a non-negative integer. We define the language accepted with at
most k non-ordinary steps to be Tk(A) = {w ∈ Σ∗ | (q0, w) &∗A (q, λ) with at
most k non-ordinary steps and q ∈ F }. If the number of non-ordinary steps is
not bounded, the language accepted is analogously defined as above and denoted
by T (A). In order to clarify our notation we give an example. In what follows,
when specifying an automaton we will list only those transitions which do not
map to the empty set.

Example 2. Let A = ({q0, qa, qb}, {a, b}, δ,Δ, q0, {q0}) be a right-revolving finite
automaton, where

1. δ(q0, a) = {qb} 3. δ(qa, a) = {q0} 5. Δ(qa, b) = {qa}
2. δ(q0, b) = {qa} 4. δ(qb, b) = {q0} 6. Δ(qb, a) = {qb}

Automaton A accepts the context-free language L = {w ∈ {a, b}∗ | |w|a = |w|b }:
The transitions (1) and (2) allow A to store the currently read input letter in
the finite control in order to search for a corresponding mate letter. Whenever a
corresponding mate is found A uses either transitions (3) or (4) to return to the
initial state. Being in a search state, all non-mate letters are shifted through to
the end of the input word. This is done with the transitions (5) and (6). Thus,
the input satisfies the property |w|a = |w|b, when the automaton reaches the
accepting state. It is easy to see that the above given automaton, when defined
as a left-revolving automaton, accepts the same language.

Example 3. Let A = ({q0, qa, qb, q
′
a, q

′
b}, {a, b}, δ,Δ, q0, {q0}) be a left-revolving

finite automaton, where
1. δ(q0, a) = {qa} 4. δ(q′b, b) = {q0} 7. Δ(qb, a) = {q′b}
2. δ(q0, b) = {qb} 5. Δ(qa, a) = {q′a} 8. Δ(qb, b) = {q′b}
3. δ(q′a, a) = {q0} 6. Δ(qa, b) = {q′a}

Automaton A accepts the linear context-free language L = {wwR | w ∈ {a, b}∗ }:
The transitions (1) and (2) allow A to store the currently read input letter in
the finite control in order to search for a corresponding mate letter, which must
be at the end of the input word. Then with transitions (5) through (8) the letter
at the end of the input is revolved to the left, and with transitions (3) and (4)
it is verified. Then the search process is started all over again.

The next theorem shows that λ-moves do not increase the computational
power of revolving finite automata. The proof is a modification of the standard
proof for finite automata. So, in the sequel we may consider λ-free automata for
convenience.

Theorem 4. Let k be a non-negative integer. For any revolving finite automa-
ton A one can construct a λ-free revolving finite automaton B, such that Tk(A) =
Tk(B). The statements remain true if an unbounded number of revolving steps
is allowed. ��
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3 Revolving Finite Automata

This section is devoted to some basic results on revolving finite automata that
reveal, roughly, the positions of the accepted language families in the Chomsky
hierarchy. Our first results concern the bottom of the hierarchy. The following
theorem shows that providing finite automata with an unbounded number of
circular-interchanging operations does not increase their computational capacity.

Theorem 5. A language L is accepted by a circular-interchanging finite au-
tomaton if and only if L is regular.

Proof. The implication from left to right is obvious. The converse implication ba-
sically follows from the following observation. Whenever a circular-interchanging
finite automaton performs a circular-interchanging operation it interchanges the
currently read and the last letter in the input. So, once the last letter is known, a
simulating automaton can remember the current last letter in its finite control in
order to behave correctly. Moreover, initially, the last input letter can be guessed
and, finally, the guess can be verified. Formally, let A = (Q,Σ, δ,Δ, q0, F ) be a
λ-free circular-interchanging finite automaton. A language-equivalent nondeter-
ministic finite automaton that may perform λ-moves B = (Q′, Σ, δ′, q′0, F

′) is
constructed as follows.

Let Q̂ and Q̃ be disjoint copies of Q, then Q′ =
(
(Q ∪ Q̂)×Σ ×Σ

)
∪{q′0}∪Q̃

and F ′ = { q̃ ∈ Q̃ | q ∈ F }. The transition function δ′ is specified as follows:

1. Define δ′(q′0, λ) = { (q0, c, c) | c ∈ Σ }.
2. For all q ∈ Q, a, c ∈ Σ, b ∈ Σ, let δ′((q, a, c), b) ⊇ { (p, a, c) | p ∈ δ(q, b) }.
3. For all q ∈ Q, a, c ∈ Σ, let δ′((q, a, c), c) ⊇ { p̃ | p ∈ δ(q, c) }.
4. For all q ∈ Q, a, b, c ∈ Σ, let δ′((q, a, c), b) ⊇ { (p̂, a, c) | p ∈ Δ(q, b) }.
5. For all q̂ ∈ Q̂, a, b, c ∈ Σ, let δ′((q̂, a, c), b) ⊇ { (p, a, c) | p ∈ Δ(q, a) }.
6. For all q̂ ∈ Q̂, a, b, c ∈ Σ, let δ′((q̂, a, c), b) ⊇ { (p, b, c) | p ∈ δ(q, a) }.

No further transitions than listed above are contained in δ′. In the states of the
form (q, a, c), q represents the current state of A, the second component a stores
the input letter which would become leftmost after a circular-interchanging op-
eration was applied, whereas the third component c serves for memorizing the
initially guessed last input letter. Transition (1) implements the initial guess of
the last input letter. Subsequently, ordinary moves of A are simulated by tran-
sitions of type (2). The last move in any accepting computation has to be an
ordinary one. Transitions of type (3) switch to states from Q̃ if the currently read
input letter matches the initially guessed last input letter. Since subsequently
the computation is blocked and due to the construction of F ′, they implement
the verification of the guess. Transitions (4) to (6) are for the simulation of
circular-interchanging operations and the subsequent ordinary moves. After a
simulated circular-interchanging operation the currently read input letter has to
be remembered as the new last letter, whereas the formerly remembered last
input letter becomes the letter for the next transition. ��
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So, circular-interchanging finite automata are yet another characterization of
the regular languages. In general, the situation is completely different for left-,
right-, and bi-revolving finite automata. But in the specific case where the num-
ber of operations is bounded by an arbitrary constant, again, the computational
power is not increased.

Theorem 6. Let k be a non-negative integer. A language L is accepted by a
revolving finite automaton A with at most k revolving steps, i.e., Tk(A) = L, if
and only if L is regular.

Proof. For circular-interchanging finite automata the statement holds by Theo-
rem 5. Since left- and right-revolving automata are particular types of revolving
automata, it is sufficient to provide the proof for bi-revolving automata.

The implication from right to left is immediate. Conversely, we argue as
follows: Let A = (Q,Σ, δ,Δ�, Δr, q0, F ) be a bi-revolving finite automaton. By
induction on k we show that the language Tk(A) is regular. If k = 0 the statement
is obviously true. Now consider a word w in Tk+1(A). Then the first revolving step
on w is a left- or right-revolving move. In the former case we find a decomposition
w = ua or w = uavb with u, v ∈ Σ∗ and a, b ∈ Σ such that (q0, w) = (q0, ua) &∗A
(q, a) &A (p, a) &∗A (qf , λ), where (q0, ua) &∗A (q, a) is a computation without any
revolving move, p ∈ Δ�(q, a), (p, a) &∗A (qf , λ) is a computation with exactly k
revolving moves, and qf ∈ F , or (q0, w) = (q0, uavb) &∗A (q, avb) &A (p, bav) &∗A
(qf , λ), where (q0, uavb) &∗A (q, avb) is a computation without any revolving
move, p ∈ Δ�(q, a), (p, bav) &∗A (qf , λ) is a computation with exactly k revolving
moves, and qf ∈ F . In the latter case, the decomposition of w reads as w = uav
with u, v ∈ Σ∗ and a ∈ Σ such that (q0, w) = (q0, uav) &∗A (q, av) &A (p, va) &∗A
(qf , λ), where (q0, uav) &∗A (q, a) is a computation without any revolving move,
p ∈ Δr(q, a), (p, va) &∗A (qf , λ) is a computation with exactly k revolving moves,
and qf ∈ F . Thus, the language Tk+1(A) can be expressed as the union of the
following languages

L1,1 =
⋃
q∈Q

⋃
a∈Σ

⋃
p∈Δ�(q,a)

T0(Aq0,q) · { a ∈ Σ | a ∈ Tk(Ap,qf
) with qf ∈ F }

L1,2 =
⋃
q∈Q

⋃
a,b∈Σ

⋃
p∈Δ�(q,a)

T0(Aq0,q) ·a · { v ∈ Σ∗ | bav ∈ Tk(Ap,qf
) with qf ∈ F } ·b

and
L2 =

⋃
q∈Q

⋃
a∈Σ

⋃
p∈Δr(q,a)

T0(Aq0,q) ·a · { v ∈ Σ∗ | va ∈ Tk(Ap,qf
) with qf ∈ F },

where Ap,q = (Q,Σ, δ,Δ�, Δr, p, {q}) is the bi-revolving finite automaton defined
from A. Then by induction hypothesis, all sets involved are regular. Since regular
sets are closed under concatenation and left- and right-quotient, it follows that
language Tk+1(A) is regular, too. ��

Whenever the number of revolving moves is not restricted to be constant,
then we find the following upper bound.
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Theorem 7. Every language accepted by a revolving finite automaton is context
sensitive and belongs to NP. ��

Obviously, unary languages accepted by revolving finite automata are regular
since a left- or right-revolving move does not change the remaining part of the
input. Therefore, it can be omitted. More formally the statement reads as follows:

Theorem 8. A unary language L is accepted by a revolving finite automaton if
and only if L is regular. ��

An immediate consequence is that the inclusion in the context-sensitive lan-
guages and in NP is proper. But there is also a non-unary, somehow easy, lan-
guage not accepted by any revolving finite automaton.

Theorem 9. There is a deterministic, two-linear context-free language, which
cannot be accepted by any revolving finite automaton.

Proof. Consider the language L = { bmambanbn | m,n ≥ 1 }. Assume that there
is a bi-revolving finite automaton A = (Q,Σ, δ,Δ�, Δr, q0, F ) accepting L. Let
|Q| = n and consider the first n transitions of an accepting computation of A on
input bn+1an+1ba2nb2n. Without loss of generality, we may assume that A is λ-
free and that the computation contains no (useless) loops. The first n transitions
may be ordinary reading transitions, or left- or right-revolving transitions in any
ordering. In any case, only symbols b are affected. By the pigeonhole principle,
at least one state of Q, say p, is repeated, say in steps i and j, where i < j ≤ n.
Assume that until step i there occur k1 reading transitions, �1 left-revolving
and r1 right-revolving transitions. Set c1 = �1 − r1 to be the difference of the
number of b’s that are revolved from the suffix to the prefix and vice versa.
Accordingly, from step i to step j let k2 be the number of occurring reading
transitions, �2 be the number of left-revolving and r2 be the number of right-
revolving transitions. Set c2 = �2−r2. Clearly, c1 and c2 can be negative numbers.
Observe, that k1 + r1 + l1 + k2 + r2 + l2 ≤ n. Thus, we have a computation

(q0, b
n+1an+1ba2nb2n) &∗A (p, bn+1+c1−k1an+1ba2nb2n−c1) &∗A

(p, bn+1+c1−k1+c2−k2an+1ba2nb2n−c1−c2) &∗A (qf , λ)

where qf ∈ F . We conclude c2 = 0. Otherwise, the computation

(q0, b
n+1+c2−k2an+1ba2nb2n−c2) &∗A

(p, bn+1+c2−k2+c1−k1an+1ba2nb2n−c2−c1) &∗A (qf , λ)

accepts a word not in L. For similar reasons we conclude c2 − k2 = 0 which in
turn implies k2 = 0. Together this is a contradiction to the assumption, since it
follows either i = j or automaton A loops. ��
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4 Left- Versus Right-Revolving Finite Automata

In this section we consider left- and right-revolving finite automata with an
unbounded number of revolving moves in more detail. Trivially, every regular
language can be accepted by a left- or right-revolving finite automaton and
moreover, the inclusion is known to be strict by Example 2. We summarize this
statement in the following theorem.

Theorem 10. (1) Let L be a regular language. Then L is accepted by a left-
or right-revolving finite automaton A, i.e., T (A) = L. (2) There is a language
accepted by a left- or right-revolving finite automaton, which cannot be accepted
by any ordinary finite automaton. ��

The next theorem shows that for left-revolving finite automata we can im-
prove the lower bound showing that every linear context-free language can be
accepted.

Theorem 11. Let L be a linear context-free language. Then L is accepted by a
left-revolving finite automaton A, i.e., T (A) = L.

Proof. Let G = (N,T, P, S) be a linear context-free grammar in normal-form,
i.e., every production is either of the form A → a, A → aB, or A → Ba, for
A,B ∈ N , B �= S and a ∈ T ; additionally, S → λ is admitted, if λ ∈ L(G).
We construct a left-revolving finite automaton A = (Q, T, δ,Δ, S, F ), where
Q = N ∪ {A′ | A ∈ N } ∪ {Λ} the union being disjoint, F = {Λ}, if λ /∈ L(G),
and F = {Λ, S}, if λ ∈ L(G), and δ and Δ are specified as follows: For every A
in N and a in T let δ(A, a) = {B ∈ N | (A → aB) ∈ P } ∪ {Λ | (A → a) ∈ P }
and δ(A′, a) = {B ∈ N | (A → Ba) ∈ P }. Moreover, for every A in N and a
in T define Δ(A, a) = {A′}.

Except for the fact that S serves as initial state it is unreachable. Hence,
λ ∈ T (A) if and only if λ ∈ L(G). By easy means one observes that A ⇒ aB if
and only if (A, au) &A (B, u) and A⇒ Ba if and only if (A, ua) &A (A′, au) &A

(B, u), for A,B ∈ N , a ∈ T , and u ∈ T ∗. Similar statements are valid in case of
termination. This immediately implies that every word generated by the linear
context-free grammar G is accepted by the left-revolving automaton A and vice
versa. Thus L(G) = T (A). ��

By Example 2, the above given inclusion is strict, since the non-linear-
context-free language L = {w ∈ {a, b}∗ | |w|a = |w|b } is accepted by a left-
revolving finite automaton. Thus, we have shown the following corollary.

Corollary 12. There is a language L accepted by a left-revolving finite automa-
ton, which cannot be generated by any linear context-free grammar. ��

The following theorem shows that a left-revolving finite automaton can simu-
late a right-revolving finite automaton provided that the input is reversed. Later
we will see that the converse relation is not true in general.



176 Henning Bordihn, Markus Holzer, and Martin Kutrib

Theorem 13. Let L be accepted by a right-revolving finite automaton A, i.e.,
L = T (A). Then the reversal of L can be accepted by some left-revolving finite
automaton B, i.e., T (B) = LR, where LR = {wR | w ∈ L }.

Proof. Let A = (Q,Σ, δ,Δ, q0, F ) be a λ-free right-revolving finite automaton
accepting the language L. We construct a left-revolving finite automaton ac-
cepting LR as follows: Define B = (Q′, Σ, δ′, Δ′, q′′0 , F ′) with Q′ = Q ∪ { q′ | q ∈
Q } ∪ {q′′0 , qf}, the unions being disjoint, and δ′ and Δ′ are specified as follows:

1. For all q ∈ Q, a ∈ Σ, let qf ∈ δ′(q, a), if δ(q, a) ∩ F �= ∅.
2. For all a ∈ Σ, let q0 ∈ Δ′(q′′0 , a).
3. For all q ∈ Q, a ∈ Σ, let p′ ∈ δ′(q, a), if p ∈ δ(q, a).
4. For all q′ ∈ Q′, a ∈ Σ, let q ∈ Δ′(q′, a).
5. For all p ∈ Q, a ∈ Σ, let Δ′(p, a) = Δ(p, a).

Finally, let F ′ = {qf}, if λ /∈ L, and F ′ = {q′′0 , qf}, if λ ∈ L. This completes
the description of the left-revolving finite automaton B. It remains to prove the
correctness of the simulation.

Note that q′′0 cannot be reached in a positive number of moves. Therefore,
due to the construction of F ′ the empty word is accepted by B if and only if
it is accepted by A. For words of length at least one we argue as follows: Let
a, b ∈ Σ and w ∈ Σ∗. On input v = (aw)R the simulation starts with

(q′′0 , v) = (q′′0 , (aw)R) = (q′′0 , wRa) &B (q0, aw
R)

using the transitions from (2). Then in order to simulate an ordinary transition
move of the form (q, abw) &A (p, bw) automaton B uses transitions from (3)
and (4) leading to (q, a(bw)R) = (q, awRb) &B (p′, wRb) &B (p, bwR). Observe,
that a transition (q, a) &A (p, λ) is simulated by (q, a) &B (qf , λ) in case p ∈ F
or by (q, a) &B (p′, λ), which cannot lead to acceptance anymore. Here transi-
tions from (1) are used in the former case, while transitions from (3) lead to a
blocking computation. Finally, the right-revolving move (q, abw) &A (p, bwa) is
mimicked with (q, a(bw)R) = (q, awRb) &B (p, bawR) = (p, b(wa)R) using tran-
sitions from (5). This shows that every word accepted by A is accepted in its
reversed form by B. Conversely, similar statements are applicable. The proof is
quite similar. Thus, the left-revolving automaton B accepts the reversed lan-
guage LR. ��

Next we show that there is a language accepted by a left-revolving finite
automaton, which cannot be accepted by any right-revolving finite automaton.

Theorem 14. There is a language L accepted by a left-revolving finite automa-
ton, which cannot be accepted by any right-revolving finite automaton.

Proof. Consider the linear context-free language L = { anbn | n ≥ 0 }, which by
Theorem 11 is acceptable by a left-revolving finite automaton. Assume that L is
accepted by a λ-free right-revolving finite automaton A = (Q, {a, b}, δ,Δ, q0, F ).

The proof is done in two steps: Let n = |Q|. First we show that the number
of ordinary steps reading a sequence of a’s between two consecutive revolving
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moves is bounded by n. This is obvious, because otherwise one state is repeated
at least once due to the pigeon hole principle. Thus, cutting this loop leads to a
valid computation. Therefore, whenever the original word is accepted, also the
new word induced by the cut loop is also accepted. Since after the cutting the
number of a’s is not equal to the number of b’s on the input the automaton
accepts a word not of the appropriate form. Therefore, in the forthcoming we
may assume that the automaton A fulfills the above mentioned property.

Second, consider an accepting computation of the right-revolving automa-
ton A on input w = an(n+1)+1bn(n+1)+1. Because of the above mentioned fact,
there are at least n + 1 positions where a right-revolving move is started by
reading a letter a. Because of the pigeon hole principle we find a state, say p,
which appears at least twice. Thus, starting the computation in state q0 with
input w, the first appearance of state p is reached by i ordinary moves and j
right-revolving moves (inter-winded), with 0 ≤ j < n + 1. Hence we have

(q0, w) = (q0, a
n(n+1)+1bn(n+1)+1) &∗A (p, an(n+1)+1−i−jbn(n+1)+1aj).

Then from the latter configuration state p is reached a second time by k ordinary
moves and � right-revolving moves (inter-winded) with 1 ≤ � ≤ (n + 1) − j.
Therefore we find

(p, an(n+1)+1−i−jbn(n+1)+1aj) &∗A (p, an(n+1)+1−i−j−k−�bn(n+1)+1aja�).

Since we are considering an accepting configuration, there is a state qf ∈ F
such that (p, an(n+1)+1−i−j−k−�bn(n+1)+1aj+�) &∗A (qf , λ). Observe, that j + � ≤
(n + 1) and i + j + k + � ≤ n(n + 1). Now we can fool the automaton A by
constructing an accepting computation for the word

w′ = an(n+1)+1−k−�bn(n+1)+1a�

by cutting out the above considered loop in the computation. For this word we
have the accepting computation

(q0, w
′) = (q0, a

n(n+1)+1−k−�bn(n+1)+1a�) &∗A
(p, an(n+1)+1−i−j−k−�bn(n+1)+1a�aj) =

(p, an(n+1)+1−i−j−k−�bn(n+1)+1aj+�) &∗A (qf , λ)

of A. Since the constructed word w′ is not a member of L we obtain a contradic-
tion. Thus no right-revolving finite automaton can accept the considered linear
context-free language. ��

The language used in the above given proof shows that the converse of The-
orem 13, i.e., replacing left-revolving by right-revolving and vice versa, is not
true in general. Thus, we can state the following corollary.

Corollary 15. (1) There is a language L accepted by a left-revolving finite au-
tomaton, such that the reversal of L, i.e the language LR, cannot be accepted
by any right-revolving finite automaton. (2) There is a language accepted by a
bi-revolving finite automaton, which cannot be accepted by any right-revolving
finite automaton. ��
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In the remainder of this section we compare the computational powers of
right- and left-revolving automata in more detail.

Lemma 16. (1) The families of languages accepted by right-revolving finite au-
tomata and their reversals on the one hand and the family of linear context-free
languages on the other hand are incomparable. (2) The families of languages
accepted by right-revolving finite automata and their reversals, left-revolving fi-
nite automata, and bi-revolving finite automata on one hand and the families of
deterministic context-free, two-linear context-free, and context-free languages on
the other hand are incomparable.

Proof. By a straightforward extension of Example 2 one can construct a right-
or left-revolving finite automaton that accepts the non-context-free language
L = {w ∈ {a, b, c}∗ | |w|a = |w|b = |w|c }, satisfying L = LR. Conversely, (1)
by Theorem 14 neither the linear context-free language L1 = { anbn | n ≥ 0 }
nor its reversal is accepted by any right-revolving finite automaton. (2) By The-
orem 9 there is a deterministic, two-linear context-free language which cannot
be accepted by any revolving finite automaton. ��

Without proof we state the following theorem.

Theorem 17. There is a language accepted by a right-revolving finite automa-
ton, which cannot be accepted by any left-revolving finite automaton. ��

Basically, the proof relies on the witness language

{w | w = uacv, u ∈ {a, b}∗, v ∈ {a, b, c}∗, |w|a = |w|b = |w|c }
and the fact that a left-revolving finite automaton initially must not read too
many symbols of u in order to compare the numbers of different symbols, and
thus cannot check whether subword u is followed by symbol a. The above given
theorem immediately implies the following separation result.

Corollary 18. (1) There is a language accepted by a bi-revolving finite automa-
ton, which cannot be accepted by any left-revolving finite automaton. (2) The
families of languages accepted by left- and right-revolving finite automata are
incomparable. ��

Finally, the presented witness languages in Example 2 and in the proofs of
Theorems 14 and 17 show even more, namely the non-closure under intersection
with regular sets.

Corollary 19. Neither (1) the family of languages accepted by left-revolving
finite automata nor (2) the family of languages accepted by right-revolving finite
automata are closed under intersection with regular sets. ��

5 Conclusions

We have studied the power of revolving finite automata, that are finite ma-
chines equipped with the additional ability to shift the unread part of the
input. The proven inclusion relations are summarized in Figure 2 – where
L(bi-RFA) (L(left-RFA), L(right-RFA), L(CIFA), respectively) denotes the
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CSL

CFL L(bi-RFA)

2-LIN L(left-RFA)

LIN LR(right-RFA) L(right-RFA)

REG = L(CIFA)

Fig. 2. Inclusion structure

family of languages which are accepted by
bi-revolving (left-revolving, right-revolving,
circular-interchanging, respectively) finite au-
tomata and the family LR(right-RFA) is equal
to {LR | L ∈ L(right-RFA) }. Moreover,
CSL, CFL, 2-LIN, LIN, and REG refer to the
families of context-sensitive, context-free, two-
linear context-free, linear context-free, and
regular languages, respectively. All shown in-
clusions are strict and language families that
are not linked by a path are pairwise incom-
parable. Nevertheless, several questions for
revolving automata remain unanswered. We
mention three of them: (1) How do deterministic and nondeterministic revolving
automata language families relate to each other? (2) What is the relationship
between these language families and other well-known formal language classes?
(3) What is the computational power of revolving pushdown or stack automata?
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2 UQÀM, Département de Mathématiques, case postale 8888,
succursale Centre-Ville, Montreal (Québec), H3C 3P8, Canada
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Abstract. For heuristic reasons billiard words may have more palin-
dromic factors than any other words. Many results are already known,
concerning the palindromic factors and the palindromic prefixes of Stur-
mian words and billiard words on two letters. We give general results
concerning multidimensional billiard words, which describe very differ-
ent situations. In some cases, these words have arbitrary long palindromic
prefix factors. In other cases, at the opposite, they have finitely many
distinct palindromic factors.

Keywords: Words, languages, Sturmian, Billiard, palindromes.
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1 Introduction

1.1 Palindromic Factors

We consider finite or infinite words on the finite alphabet A := {a1, a2, . . . , ak},
with k ≥ 2. In the following we use a geometrical approach of words, and k can
be viewed as the dimension of the words. A finite word v is called a palindromic
word when it is equal to its reversal. We denote by ṽ the reversal of word v.

We can make two preliminary remarks:

1. The palindromic property corresponds to a symmetry property of the finite
word. An infinite word on A corresponds to a trajectory, or a curve, in
the k-dimensional space RI k

+, so that infinite words with many palindromic
factors may correspond to curves which are locally invariant by many central
symmetries. The best candidates are lines, which correspond to the so-called
billiard words.

2. Letters are trivial palindromic words of length 1. In dimension 2, any word of
length bigger than 2 has a non trivial palindromic factor. In the other sense,
in any higher dimension, there exist infinite words without any palindromic
factors, e.g. (a1a2a3)∞.
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1.2 Billiard Words

There exist many different ways to define billiard words, which are special cases
of general Sturmian words, especially in dimension 2. Here we choose the geo-
metrical one. We consider a vector α := (α1, α2, . . . , αk) with αi positive. Let
D be the half-line of origin O and parallel to (α1, α2, . . . , αk). We construct the
billiard word, or cutting sequence, cα as follow.

1.2.1 Billiard Words in Dimension k = 2
There are three different ways to define cα, see Fig.1.a:

1. by looking at the horizontal and vertical segments on the grid G, which is the
set of vertical half-lines with integer x-coordinate and of horizontal half-lines
with integer y-coordinate. We denote by a1 the horizontal segement and by
a2 the vertical one. Then we encode the discrete path immediately under the
half-line D, and we obtain the Christoffel word uα = a1cα;

2. by moving from O to infinity on the half-line D, we encode by a1 a crossing
point (black point) with a vertical line and by a2 a crossing point with an
horizontal line. This gives the infinite word cα;

3. by looking at the centers (white points) of the unit squares crossed by D.
These centers are ordered, two consecutive centers correspond to joining
squares, so that the vector joining these points is one of the vector of the
canonical basis (e1, e2). We encode by ai the vector ei, and we obtain the
infinite word cα.

Fig. 1.

This works as soon as the half-line D has no integer point except for the
origin, i.e.,

α1

α2
is an irrational number.

The same construction can be made using any half-lines D, this gives general
Sturmian words. These words have been intensively studied, see e.g. [1], [5],
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[17], and are related to continued fraction expansions, Farey sequences, and the
Stern-Brocot tree, [13] or [6]. The Christoffel words first appear in [7].

1.2.2 Billiard Words in Dimension k ≥ 3
We consider some kinds of points in the k-dimensional space.

Definition 1.1. Let M = (x1, x2, . . . , xk) ∈ RI k
+ be a k-dimensional point with

positive coordinates. Such a point is called:

– a 2 -integer point when at least two coordinates xj are positive integers;
– a visible point whenever there are no 2-integer points N on the segment OM ,

except for the endpoints O and M ;
– an integer point when all its coordinates are positive integers;
– a visible integer point when it is both visible and integer.

We consider the facets of the unit k-cubes: a facet is a subset of the k-cube
formed by all points having a fixed i-th coordinate. The methods 2. and 3. above
can be generalized in any dimension. This works as soon as D crosses each facet
in its interior, i.e., the half-line D has no 2-integer point except for O. This
property corresponds to

αi

αj
/∈ Q, 1 ≤ i < j ≤ k. (1)

This condition already holds if we have:

the αi’s are Q-linearly independent (2)

and we say that (α1, α2, . . . , αk) is totally irrational, see [2]. These two conditions
are the same only in dimension 2.

1.2.3 Finite Billiard Words
Let M := (m1,m2, . . . ,mk) ∈ NI k, where the mi are pairwise coprime. The
segment OM crosses several k-cubes and one defines, as before, a finite word cM

on the same alphabet, called the (finite) billiard word associated to M . One has:⎧⎪⎨⎪⎩
|cM |ai = mi − 1, 1 ≤ i ≤ k

|cM | =
k∑

i=1

mi − k

Note that, as usual, |v| is the length of word v, and |v|a its a-degree. Observe
that cM is a palindrome.

1.2.4 Billiard Words with Intercept
The same construction can be made for any half-lineD parallel to (α1, α2, . . . , αk)
and starting from any point S as soon as D does not contain any 2-integer point.
This condition is assumed in the following. By method 2. or 3., we construct the
billiard word with intercept denoted by cα,S . So we have cα = cα,O, and by
translation it suffices to consider the starting points S on the facets of the unit
k-cube at the origin, i.e., with at least one zero coordinate sj and the other ones
between 0 and 1.
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2 Factors of Billiard Words

2.1 Some Notations

For a given vector α = (α1, α2, . . . , αk), we consider the subspace D⊥ of the
k-dimensional space, and the orthogonal projection P of the open unit k-cube
centered at the origin onto D⊥. We denote by bj , 1 ≤ j ≤ k, the orthogonal
projection onto D⊥ of the vectors ej of the canonical basis of RI k. C denotes
the orthogonal projection of the center of the first k-unit cube in the grid, i.e.,

"OC =
1
2

k∑
j=1

bj, and by S̃ the crossing point of D and D⊥.

Definition 2.1. A finite sequence H0, H1, H2, . . . , Hn of points in P is called a
b-trajectory if for each 1 ≤ i ≤ n, there exists some j = j(i) such that "Hi−1Hi =
bj.

2.2 b-Trajectories and Factors of Billiard Words

Such a b-trajectory can be characterized by its origin H0 and its coding word
aj(1)aj(2) . . . aj(n) in A. Let Fα1,α2,...,αk

be the language, i.e., the set of factors,
of all the billiard words cα1,α2,...,αk,S .

Theorem 2.1. 1. For a given length n and almost all points H0 in P, there
exists a unique b-trajectory of length n and starting from H0.

2. A finite word on A is in Fα1,α2,...,αk
if and only if it encodes some b-trajectory

in P.
3. In the totally irrational case (2) and for any S, a finite word on A is a factor

of cα1,α2,...,αk,S if and only if it encodes some b-trajectory in H.

Fig. 2.

In the Figure 2 above, in dimension 3, P is an hexagon, and the b-trajectory
of length 11 starting from H is represented.

The exceptional points in the first part of the theorem above can be charac-
terized. They correspond to the ambiguous cases, i.e., to half-lines D parallel to
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(α1, α2, . . . , αk) which contain some 2-integer point. By iterating the Part 1. of
the theorem, there exists a unique infinite b-trajectory starting from a given non-
exceptional point in P . It can be easily proved that the orthogonal projections of
the centers of the unit k-cubes crossed by D remain in the translated polyedron

PS := P +
k∑

j=1

sjbj whose center is S̃. Thus the billiard word cα,S encodes the

infinite b-trajectory starting from the point C − S̃, i.e.,
k∑

j=1

(
1
2
− sj)bj .

Moreover, in the totally irrational case (2), the set of the orthogonal projec-
tions of the centers of the unit k-cubes crossed by D is dense in PS . This proves
the Part 3. of the theorem.

It is possible to give a characterization of those points H0 which are starting
points of a b-trajectory, for a given finite word v on A.

Proposition 1 For any finite word v on the alphabet A, the set Pv of the start-
ing points of the b-trajectories with coding word v is an open polyedral convex
set of dimension k − 1. The diameter of this set tends to zero as the length of v
tends to infinity.

For many v the set Pv is an empty set, the non-empty sets correspond to
those words v of the language Fα. In [2] and [3], the study of the structure of
these sets allows to obtain the complexity of the language of the billiard words
in the totally irrational case, for 3-dimensional words and in any dimension
respectively.

2.3 Application to Palindromic Factors

We say that a factor w of a finite word v is a central factor when we have
v = v1wv2 with |v1| = |v2|, and we call center of v the central factor of v of
length 1 or 2, as |v| is odd or even.

Proposition 2 – For each letter aj in A, the set Paj contains the point −1
2
bj,

thus it is non-empty.
– The only non-empty set Pajaj corresponds to the letter aj0 coding the unique

b-trajectory of length 1 starting at the origin.

Let H be the closure of the set of points in the infinite b-trajectory corresponding
to the billiard word cα,S . With the total irrationality hypothesis (2), H is the clo-
sure of P , and we obtain that any billiard word has infinitely many palindromic
factors, and more precisely:

– for any even integer n, a unique palindromic factor of length n, whose center
is the only pair of letters aj0aj0 which belongs to the language Fα1,α2,...,αk

;
– for any odd integer n, and for each letter aj in the alphabet A, a unique

palindromic factor of length n in which the letter aj is in central position.

The general situation (1) is more complicate.
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Theorem 2.2. – The billiard word cα,S contains arbitrary long palindromic
factors of even length if and only if O is in H.

– The billiard word cα,S contains arbitrary long palindromic factors of odd

length and of center aj if and only if
1
2
bj is in H.

As an example in dimension k = 3, we take for α the vector (2,
√

5, 1 +
√

5)

and consider the billiard word cα starting at the origin. Then
1
2
b1 is in H, but

O,
1
2
b2 and

1
2
b3 are not in H. Moreover the billiard word does not contain any

palindromic factor of even length: in this case, j0 = 3, but H does not intersect
Pa3a3 . So the word a3a3 is not a factor of this billiard word, the number of
factors of length 2 is equal to 6 instead of 7 in the general case.

We prove that there always exist arbitrary long palindromic factors in any
billiard word in dimension 3. This result is false in higher dimension, and it is
possible to find a billiard word with 4 letters, with a finite number of palindromic
factors.

3 Palindromic Prefix Factors of Billiard Words

In this section we consider only billiard words cα starting from the origin.

3.1 Dimension 2

The question of palindromic prefix factors of billiard words has been studied in
dimension 2, see for example [9], [10], [11], [12] and [16].

It can be easily shown that the palindromic prefix factors of billiard words
are finite billiard words, and correspond to the continued fraction expansion (see
[8] or [14]) of the slope ρ :=

α2

α1
of the half-line D.

Theorem 3.1. The palindromic prefixes of the infinite billiard word cα are finite
billiard words; for all n > 0 they are the prefixes of length pn + qn − 2, for all
the main and intermediate convergents

pn

qn
of the continued fraction expansion

of the real number ρ.

This result is stated in [4], [9], [10], in a slightly different formulation. A
purely geometrical proof of this result can also be given, by using a geometrical
approach of the theory of continued fraction expansions, made by H.J.S. Smith
and Felix Klein, [15], at the end of the XIXth century, see for example [8].

3.2 Higher Dimensions

3.2.1 Main Result
Now the dimension k is greater than 2. In the general case, the billiards words
have only finitely many palindrome prefix factors. Note that these palindromic
prefixes are finite billiard words as in dimension 2.
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Theorem 3.2. With Hypothesis (1), in dimension k ≥ 3, the set of vectors
(α1, α2, . . . , αk) such that cα1,α2,...,αk

has infinitely many palindromic prefixes if
a negligible set, with respect to the Lebesgue measure on the k-dimensional unit
sphere. However, this set is dense on the positive part of this unit sphere.

As an example in dimension 3, if we choose (α1, α2, α3) = (1,
15 +

√
5

10
,

1 +
√

5
2

), the corresponding billiard word cα1,α2,α3 is: a2a3a1a2a3a2a3a1a2a3a2a1

a3a2a3a1a2a3a2a3a1a2a3a2a1a3a2a3a2a1a3a2a1a3a2a3a2a1a3a2a2a3 . . . and a2 is
the only one palindromic prefix factor of cα1,α2,α3 .

3.2.2 Integer Prefix Points
We use the notion of integer prefix point: the integer point M is called an integer
prefix point of D when the triangle OHM does not contain any 2-integer points,
except for O and M , where H is the orthogonal projection of M onto the line D.
These points correspond to the palindromic prefix factors of the billiard words.

Proposition 3 Let M = (m1,m2, . . . ,mk) be any integer point and D any half-
line parallel to vector (α1, α2, . . . , αk) satisfying the irrationality condition (1).
The following properties are the same:

– M is an integer prefix point of D;
– cM is a palindromic prefix factor of cα1,α2,...,αk

.

3.2.3 Up and Down Method
We can use the projections to study these points. For 1 ≤ i < j ≤ k, the
projections πij are defined by:

– on finite and infinite words, by uij := πij(u) is the word on Aij := {ai, aj}
obtained by erasing in u any letters excepted ai and aj ;

– on RI k
+, by πij(x1, x2, . . . , xk) := (xi, xj), which belongs to the plane Πij ;

– on the set of vectors (α1, α2, . . . , αk) in RI k
+, by πij(α1, α2, . . . , αk) :=(αi, αj).

It is very simple to prove that M is an integer prefix point of D if and only
if all its projections Mij := πij(M) are integer prefix points of Dij := πij(D),
thus correspond to some convergent of the ratio

αj

αi
. Hence the first coordinate

m1 of M is the denominator of some convergent for any irrational numbers
αj

α1
,

2 ≤ j ≤ k. This is a synchronization property of convergents.
A classical theorem due to Lagrange, see [14], implies that M is an integer

prefix point of D when M is very close to D. Using this property, we can prove
in some special cases that M is an integer prefix point of D when all the M1j ,
2 ≤ j ≤ k, are integer prefix points of the half-lines D1j .

3.2.4 A Probabilistic Result on Continued Fraction Expansions
The following result shows that the synchronization property of convergents
cannot appear infinitely many, for almost all vectors (α1, α2, . . . , αk).
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Proposition 3.1. For almost all positive real numbers α, the set of positive
real numbers β, having an infinity of denominators of intermediate or main
convergents in common with α, has Lebesgue measure 0.

This proposition can be proved by using some classical probabilistic results on
continued fraction expansion, see [18]. Then we get an upper bound of the prob-
ability that a given integer q is the denominator of some convergent, see the
proposition below, and use the well-known Borel-Cantelli lemma.

Proposition 3.2. Let q be a positive integer ≥ 2, and 0 < x < 1. Then the
probability Pq that q be a denominator of a main or intermediate convergent of
x satisfies:

Pq ≤
2
√

q
+

2
√

q − 1

3.2.5 The Exceptional Case
There are two different proofs for the existence of billiard words with infinitely
many palindromic prefix factors. The first one consists of an iterative construc-
tion of the numerators and denominators of the convergents of the ratios

αj

α1
,

2 ≤ j ≤ k, such that we can use the Lagrange theorem. The second one is a
purely geometrical proof.

Both proofs give the density of these words, and the first one allows to choose
billiard words respecting the total irrationality property (2).
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Nombres de Bordeaux, 5, 1993, 23-51.

7. E. B. Christoffel, Observatio arithmetica, Annali di Matematica, 6, 1875, 148-152.
8. H. Davenport, The Higher Arithmetic: An Introduction to the Theory of Numbers,

7th ed., Cambridge Univ. Press, 1999.
9. A. de Luca, Sturmian words: structure, combinatorics, and their arithmetics, The-

oret. Comput. Sci., 183, 1997, 45-82.
10. A. de Luca, Combinatorics of standard sturmian words, Structures in Logic and

Computer Science, Lecture Notes Comput. Sci., 1261, 1997, 249-267.
11. X. Droubay, Palindromes in the Fibonacci word, Inf. Proc. Letters, 55, 1995, 217-

221.



188 Jean-Pierre Borel and Christophe Reutenauer

12. X. Droubay, G. Pirillo, Palindromes and Sturmian words, Theoret. Comput. Sci.,
223, 1999, 73-85.

13. R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics, Addison-Wesley,
Reading, MA, 2nd ed., 1994.

14. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, Oxford at
the Clarendon Press, 5th ed., 1979.
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Abstract. We consider paths in the square lattice and use a valuation
called the winding number in order to exhibit some combinatorial prop-
erties on these paths. As a corollary, we obtain a characteristic property
of self-avoiding closed paths, generalizing in this way a recent result of
Daurat and Nivat (2003) on the boundary properties of polyominoes
concerning salient and reentrant points.

Keywords: Lattice paths, discrete regions, winding number, polyomi-
noes, salient and reentrant points

1 Introduction

Finding the route from a point A to a point B in a city is a problem easily
solved, when an accurate local description of the geometric configuration of
intersections is provided: indeed, everybody experienced the sometimes difficult
task of getting to a point by following a list of direction changes at crossroads.
This might be called the taxi driver algorithm. It is also well known that any
differentiable continuous curve in the plane may be linearly approximated by a
piecewise linear curve, which is used to solve all the basic computation needs in
calculus. Here, we adopt this parametric or “dynamical” point of view, which
consists to consider curves as a sequence of elementary steps, its local description,
instead of using a closed formula or equation, which may be considered as a
global description. Doing so we pursue the study initiated in a previous paper
[2] where we explicited the benefits of applying a discrete version of the Green’s
theorem on discrete paths. In this paper we consider curves on square grids or
lattices, identified with the discrete plane Z× Z. A path in the square lattice is
a polygonal path made of the elementary unit translations

a = (1, 0), a = (−1, 0), b = (0, 1), b = (0,−1).

A finite path w is therefore a word on the alphabet Σ = {a, a, b, b}, also known
as the Freeman chain code [5, 6] (see [1] for further reading). For instance the
paths in Figure 1 are coded respectively by the words

U = abbaaababbaabbbaaabbbbaabbabaabbaaaaabaabaabbababbaaabbaaba ,

V = baababababbabaabababaaabababaabbbbabbbbbababababbbabaabbaaabbbaaaa .
� With the support of NSERC (Canada)

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 189–198, 2005.
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U

V

Fig. 1. An open path U and a closed path V with origin •

Observe that crossings are quite ambiguous in the geometric representation.
Fortunately, the codings provided by the words representation are not.

The paper is organized as follows. We introduce in Section 2 the winding
number of a path in a square lattice, a valuation derived from the Manhattan
taxi driver algorithm, and list some of its basic properties. Then we apply the
results to self-avoiding paths. In the case of closed self-avoiding paths we obtain
a generalization of the recent and nice result in discrete geometry obtained by
Daurat and Nivat [4] that relates the S salient and R reentrant points of a
polyomino:

S −R = 4.

Finally we discuss the extensions to other lattices: amazingly there is an analogue
for hexagonal lattices stating that

S −R = 6,

and there is no other regular or semi-regular lattices for which the formula
S −R = const holds in general.

2 A Valuation on Square Lattice Paths

From now on, a path w of length |w| = n is a function w : [1..n] −→ Σ and is
written w = w1w2 · · ·wn where wi is the i-th letter, 1 ≤ i ≤ n. Also, the number
of occurences of a given letter α in the word w is denoted |w|α. The set of n-
length paths is denoted Σn, the set of all paths is Σ∗, and for later use Σ≥2 is
the set of paths of length at least 2. The mirror image ũ of u = u1u2 · · ·un ∈ Σn

is the word ũ = unun−1 · · ·u1. In what follows the alphabet is Σ = {a, a, b, b}.
There is a usual length preserving morphism, the complement defined by the
relations

a = a ; b = b,

which extends to words as follows. The complement of u = u1u2 · · ·un ∈ Σn, is
the word u = u1 u2 u3 · · ·un .
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2.1 The Manhattan Taxi Driver Algorithm

On a square grid, a path can be described by a sequence of left or right turns
along with forward and backward steps. Using the alphabet Σ of units steps, we
define the corresponding set of movements by

VL = {ab, ba, ab, ba} is the set of left turns;
VR = {ba, ab, ba, ab} is the set of right turns;
VF = {aa, aa, bb, bb} is the set of forward steps;
VB = {aa, aa, bb, bb} is the set of backward steps.

These sets respectively correspond to the basic movements in the left (L), right
(R), forward(F ) and back (B) directions. Observe that

VL = ṼR ; VR = VR ; VL = VL ; VB = VB ; VB = ṼB ; VF = ṼF ; VF = VF .

Note also that each path w = w1w2 · · ·wn is completely determined, up to
translation, by its initial step and a word on the alphabet Σd = {L,F,R,B}.
Indeed let g : Σ2 −→ Σd, be defined by

g(u) =

⎧⎪⎪⎨⎪⎪⎩
L if u ∈ VL,
F if u ∈ VF ,
R if u ∈ VR,
B if u ∈ VB .

(1)

Then g is extended to a function f : Σ≥2 −→ Σ×Σ∗
d defined on arbitrary paths

by

f(w) =

(
w1,

n−1∏
i=1

g(wiwi+1)

)
, (2)

where n is the length of the word w and the product is the concatenation.
Since we are only interested in the geometric properties of paths, we drop the
starting step (which amounts to work with the equivalence class determined by
the rotations). The following lemma is straightforward.

Lemma 1 Let w ∈ Σ∗ be a closed path, then

(i) w is of even length: w = w1w2 · · ·w2n for some integer n ≥ 1;
(ii) f(w) is of odd length.

Proof. (i) Since w is closed, we have |w|a = |w|a and |w|b = |w|b. And it follows
that

|w| = |w|a + |w|a + |w|b + |w|b = 2|w|a + 2|w|b = 2(|w|a + |w|b).

(ii) clearly follows from (i), since |f(w)| = |w| − 1. ��
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We introduce now a weight function p : Σ2 −→ Σp = {−1, 0, 1, 2} on paths
of length two by defining

p(u) =

⎧⎪⎪⎨⎪⎪⎩
−1 if u ∈ VR,

0 if u ∈ VF ,
1 if u ∈ VL,
2 if u ∈ VB.

(3)

This weight extends to a valuation P : Σ≥1 −→ Z defined on each path w such
that n ≥ 1 by setting

P (w) =
{∑n−1

i=1 p(wiwi+1) if n > 1,
0 if n = 1.

(4)

The valuation is nothing but the winding number, that is to say the number
of direction changes by π

2 units: a left turn corresponds to a positive rotation by
(+1)π

2 , a right turn to a negative rotation by (−1)π
2 and an element in VB to a

rotation by (2)π
2 = π (stepping in the opposite direction).

The following additivity formula follows directly from the definition of the
valuation function P given by (4).

Property 1 [Additivity] Let u = u1u2 · · ·ukuk+1 · · ·un be a word in Σ≥2. Then
we have

P (u) = P (u1 · · ·uk) + P (ukuk+1) + P (uk+1 · · ·un).

Examples. Consider the path U in Figure 1. We have P (U) = −8. Observe
that the first and last letter are equal and that there are three clockwise cycles
and 1 counterclockwise cycle. So that U can be factorized as

U = abba·(aababbaabbbaaabb)·bbaab·(babaabbaaa)·aabaabaab·(bababbaa)·abbaaba.

In other words the final direction is the same but we have made 4 complete
rotations: −3× 4 + 1× 4 = −8.

For the path V we have P (V ) = −3. There are two clockwise and one coun-
terclockwise cycles which cancel. The first letter of V is v1 = b and the last letter
is a.

More precisely, the valuation modulo 4 depends only on the first and last
letter of the path. These observations lead to the following result.

Theorem 1. Let w = w1w2 · · ·wn ∈ Σ≥2, then

P (w) ≡ p(w1wn) mod 4.

Proof. The valuation modulo 4 indicates the relative position between the initial
step and the current step. More precisely, we proceed by induction as follows:
the result is straightforwardly true if n ≤ 3, since

P (w1w2w3) ≡ p(w1w3) mod 4.
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Suppose that it is true for n− 1 ≥ 3, then by definition,

P (w1w2 · · ·wn) = P (w1w2 · · ·wn−1) + P (wn−1wn).

Hence, by the induction hypothesis,

P (w1w2 · · ·wn) ≡ p(w1wn−1) + p(wn−1wn) mod 4
= P (w1wn−1wn)
≡ p(w1wn) mod 4. ��

Since the winding number depends on the relative position of the first and
last letter, the following properties follow immediately.

Proposition 1 For any path w = w1 · · ·wn we have

(i) P (w) ≡ 0 mod 4 ⇐⇒ w1 = wn;
(ii) P (w · w1) ≡ P (w̃ · w1) ≡ 0 mod 4.

Note that an analogous result is true for any piecewise differentiable path: this
is nothing but the angle between the tangent vectors at each end point.

2.2 An Application to Self-avoiding Paths

By self-avoiding path we mean an oriented path having no backward steps and
no distinct vertices v, v1, v2, v3, v4 such that v1vv2 and v3vv4 are triples made
of consecutive vertices of the path (traversed in either direction, see Figure 2).
In other words a path may not traverse itself.

v

1

4

2

3

v
v

v

v

Fig. 2. The forbidden multiple points

Nevertheless multiple points may exist and some of them are displayed in Fig-
ure 3. Note that a self-avoiding closed path may not contain multiple points of
type (a) or (d). Indeed, if a closed path w contains a multiple point of say type
(a), then the point v1 must be connected to the point v2 by some self-avoiding
path x, and point v3 to point v4 by some self-avoiding path y. Then x and y
intersect, a contradiction.

In the case of self-avoiding paths, backward steps in VB = {aa, aa, bb, bb} are
omitted and the valuation is the restriction of p to the set Σ2 \ VB , namely the
function (identified by the same letter):

p : Σ2 \ VB −→ {−1, 0, 1} by p(u) =

⎧⎨⎩
−1 if u ∈ VR,

0 if u ∈ VF ,
1 if u ∈ VL.
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(a)

v

4v

3v

2vv

(d)

1v

4v

2v

(e)

v
1v

4v

3v

2vv

(c)

1v

4v

3v

2vv

(b)

1v

4v

3v

2vv
1

Fig. 3. Some allowed multiple points types

In this case the winding number is computed only with left and right turns and
Proposition 1 may be specialized as follows.

Lemma 2 Every nonempty open self-avoiding path w = w1w2 · · ·wn such that

(i) w1 = wn,
(ii) the directed half-lines defined by w1 and wn do not intersect the path,

satisfies
P (w) = P (w̃) = 0. (5)

Although a more general formulation holds, the condition (i) is enough for our
need and (ii) is necessary to avoid the situations described in Figure 4.

Fig. 4. Half-line intersecting the path

Proof. Condition (i) and the definition of P give

P (w) =
n−1∑
i=1

p(wiwi+1)

=
∑

wiwi+1∈VL

p(wiwi+1) +
∑

wiwi+1∈VF

p(wiwi+1) +
∑

wiwi+1∈VR

p(wiwi+1)

=
∑

wiwi+1∈VL

p(wiwi+1) +
∑

wiwi+1∈VR

p(wiwi+1)

≡ 0 mod 4.

(6)

By condition (ii), cummulative complete rotations are forbidden and the last
sum is actually P (w) = 0. ��
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N

W E

S

Fig. 5. A region and its four extremal points

Now, every self-avoiding closed path U is the boundary of some unique region.
Let Q be the smallest rectangle containing U as shown in Figure 5.

The four extremal points are defined by the coordinates: W is the lowest in-
tersection with the left side of Q, N the leftmost intersection with the top side, E
the highest intersection with the right side, and S the rightmost intersection with
the bottom side. Accordingly U may be rewritten (counterclockwise), starting
from W as

U = (aX) · (bY ) · (aZ) · (bV ), (7)

where X,Y, Z, V may be either empty (not necessarily simultaneously), or X =
xa, Y = yb, Z = za, V = vb. Emptyness corresponds to the case where the
extremal points coincide with the corners of the rectangle.

Consider the case where X,Y, Z, and V are non-empty. Then, using the
additivity Property 1 and the Lemma 2 above we have

P (U) = P (axa) + P (ab) + P (byb) + P (ba) + P (aza) + P (ab) + P (bvb)
= 0 + 1 + 0 + 1 + 0 + 1 + 0 = 3,

or equivalently
|f(U)|L = |f(U)|R + 3.

The case where some or all of the X,Y, Z, V are empty is left to the reader. We
have thus proved the following result.

Corollary 1 Let U be the contour of a polyomino such that f(U) consists only
of right and left turns, i.e, f(U) ∈ {LR}∗. Then we have

|f(U)| = 2|f(U)|L − 3 = 2|f(U)|R + 3.

Proposition 2 Every self-avoiding closed path U satisfies P (U) = 3.

Taxi driver Proof. Making a run from W to W counterclockwise takes 3 left
turns more than right ones. Indeed, each of the four open paths, WS, SE, EN
and NW in the factorization of U above contains exactly the same number of
right and left turns. ��
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A polyomino is a finite union of unit squares, defined up to a translation and
side-connected (see Figure 6). Left (resp. right) turns in the counterclockwise
traversal of the contour correspond to salient (resp. reentrant) points in the ter-
minology of Daurat and Nivat [4]. The four extremal points in the decomposition
above are salient.

N

S

EW

Fig. 6. A simply connected polyomino and its four extremal points

Since the closed path defining a polyomino is self-avoiding we obtain a con-
structive simple proof of the following result of Daurat and Nivat [4].

Corollary 2 The S salient and R reentrant points in every polyomino are re-
lated by the formula

S −R = 4. (8)

Proof. Let U be the self-avoiding contour written counterclockwise. Starting at
W and using equation 7, we have P (Ua) = P (U) + P (ba) = 3 + 1 = 4, or
equivalently

|f(Ua)|L = |f(Ua)|R + 4. ��

Note that the four extra salient points may be canonically identified as W , S,
E and N .

3 Other Regular Lattices

It is possible to extend the results of Section 2 to arbitrary paths and also to
other classes of lattices by suitably defining the weight function on the set Σ2 of
elementary steps. Amongst the possible lattices we have the regular hexagonal
lattice (see Figure 7), for which the Daurat-Nivat formula turns out to be

S −R = 6.

by using similar arguments. Indeed a path is coded on a 6-letter alphabet and
left or right turns are 2π/6 rotations coded by the corresponding set of 2-letter
words.

In this case the additivity property still holds and Theorem 1 is adapted in
a straighforward manner. The specialization to self avoiding paths follows: the



A Note on a Result of Daurat and Nivat 197

Fig. 7. Regular hexagonal lattice

rectangular bounding box of a polyomino (see Figure 5) is replaced by the small-
est convex hexagon (see Figure 7) containing the closed path with six extremal
points instead of four.

It is likely that there is no other regular lattice with such property since the
formula S − R = constant is false for closed self-avoiding paths in a triangular
regular lattice. On the other hand, for the 8 semi regular lattices classified by
Kepler (see Figure 8), that is the lattices made of at least two distincts regular
polygons [7, 8] having the same cyclic pattern of polygon at each vertex, it can
be checked that the Daurat-Nivat formula S −R = constant is false. Due to the
lack of space, the details will be carried out in a forthcoming paper.

Fig. 8. The semi regular lattices [7]

4 Concluding Remarks

The valuation introduced in Section 2 is of geometrical nature. It measures the
total variation of the angle between the first and final steps. In complex analysis
the contour winding number or index of a contour γ relatively to a point z0 is
defined by
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Index(γ, z0) =
1

2πi

∮
γ

1
z − z0

dz,

and counts the number of times the contour γ turns around z0. This close notion
differs from ours, which is however defined even for open contours. Note that in
the context of complex numbers our valuation P may be written as

P (w) =
2
∑n−1

k=1 Arg
(

wk+1
wk

)
π

,

where Arg(z) denotes the principal argument of the complex number z �= 0 and
satisfying −π < Arg(z) ≤ π.

One may speculate about the existence of lattices where a Daurat-Nivat type
formula holds, that is

mS − nR = l,

for some integers m,n, and l. For instance, one could consider, lattices defined
by a finite set {v1, v2, · · · , vk} of k linearly non zero vectors dependent over N,
in which case closed paths exist. A natural problem would be to find conditions
on associated classes of generated simple closed paths that yield an analogue of
the Daurat-Nivat formula.
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Abstract. We study some structural and combinatorial properties of
Sturmian palindromes, i.e., palindromic finite factors of Sturmian words.
In particular, we give a formula which permits to compute in an exact
way the number of Sturmian palindromes of any length. Moreover, an
interesting characterization of Sturmian palindromes is obtained.

1 Introduction

Sturmian words have been widely studied for their theoretical importance and
their applications to various fields of science. By definition, they are infinite
words which are not eventually periodic and have minimal subword complexity.
They also enjoy some remarkable characterizations of geometrical nature (cutting
sequences, mechanical words). The reader is referred to [2] and to [1] for general
surveys on this subject.

In recent years, some works have investigated Sturmian words by looking
at their palindromic factors. A palindrome is a finite word which can be read
indistinctively from left to right or from right to left.

Palindromes play an essential role in the structure of Sturmian words. In fact,
an important theorem of X. Droubay and G. Pirillo [9] shows that an infinite
word is Sturmian if and only if it has exactly one palindromic factor of length n
for n even, and two for n odd. Moreover, A. de Luca and F. Mignosi [8] proved
that the set of palindromic prefixes of all standard Sturmian words is equal to
the set PER of central words, i.e., words having two periods p and q which are
coprime, and length p+q−2. Central words are words over a two letter alphabet
{a, b} and satisfy remarkable structural properties. In particular, a central word
w is such that wab and wba can be factorized as a product of two palindromes.
Moreover, the set St of factors of all Sturmian words is equal to the set of factors
of PER.

There exist, and even they are the majority, Sturmian palindromes which
are not central. For instance, there are 14 Sturmian palindromes of length 7,
whereas the number of central words of the same length is only 6 (see Table 2).

In this paper we are interested in the combinatorics and the structure of the
language of Sturmian palindromes. A main result, proved in Section 4.1, is a
simple formula which gives the number of Sturmian palindromes of any length.

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 199–208, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Moreover, some structural properties of Sturmian palindromes are proved in
Section 4.2. A remarkable characterization of Sturmian palindromes is given. In
particular, one obtains a new characterization of central words.

2 Preliminaries

Let A be a 2-letter alphabet {a, b}. As usual, we denote by A∗ the free monoid
generated by A, that is the set of all words over A with the operation of con-
catenation. The identity element of A∗ is the empty word ε. Let w = a1a2 · · · an

be a word, with ai ∈ A, 1 ≤ i ≤ n. The integer n is called the length of w, and
it is denoted by |w|. Conventionally, the length of the empty word is 0.

A word u is a factor of w ∈ A∗ if w = xuy for some words x, y. In the special
case x = ε (resp., y = ε), we call u a prefix (resp., suffix ) of w. A factor u of w
is proper if u �= w. A factor u of w is median if w = xuy with |x| = |y|. The set
of factors of a word x is denoted by Fact (x). For any X ⊆ A∗, one sets:

Fact (X) =
⋃

x∈X

Fact (x) .

Let w = a1a2 · · ·an be a word, with ai ∈ A, 1 ≤ i ≤ n. A positive integer p
is a period of w if for all i, j, 1 ≤ i, j ≤ n, the following condition is satisfied: if
i ≡ j (mod p), then ai = aj . The minimal period of w will be denoted by πw;
it is natural to set πε = 1. For any w �= ε, the unique positive integer k such
that w = zkz′, where |z| = πw and |z′| < πw , will be called the order of w.

Given w = a1a2 · · · an with all ai ∈ A, the reversal w∼ is the word an · · · a1.
If w = ε, one sets ε∼ = ε. A word w ∈ A∗ is a palindrome if w = w∼. The set of
all palindromes of A∗ is denoted by PAL.

An infinite word x is just an infinite sequence of letters:

x = c1c2c3 · · · where ci ∈ A, for all i ≥ 1 .

The product between a finite word and an infinite one is well defined. A (finite)
factor of x is either the empty word or any sequence u = ci · · · cj with i ≤ j, i.e.,
a finite block of consecutive letters in x. If i = 1, then u is a prefix of x. A suffix
of x is an infinite word y such that x = uy for some u ∈ A∗. We shall denote by
Fact (x) the set of finite factors of x.

An infinite word is Sturmian if for each n ∈ N it has n+1 factors of length n.
An equivalent geometrical definition can be given in terms of cutting sequences.
In fact, a Sturmian word can be defined by considering the sequence of cuts in
a squared lattice (N × N) made by a ray having a slope which is an irrational
number α. A horizontal cut is denoted by the letter b, a vertical by a, and a cut
with a corner by ab or ba. A Sturmian word represented by a ray starting from
the origin is usually called standard or the characteristic word associated with
the irrational α and it is often denoted by cα.

Let x be a finite or infinite word over A. A factor u of x is a right special
factor of x if ua and ub are factors of x. As is well known [2], an infinite word x
is Sturmian if and only if for any n ≥ 0, there is only one right special factor of
x of length n.
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3 Sturmian Palindromes

Let St be the set of finite Sturmian words, i.e., factors of infinite Sturmian words
over the alphabetA = {a, b}. We recall that for any Sturmian word there exists a
standard Sturmian word having the same set of factors (cf. [2]). In the sequel we
shall be interested in the set St∩ PAL, whose elements will be called Sturmian
palindromes.

As usual, we denote by PER the set of central words, that is, words having
two coprime periods p and q and length p + q − 2. Conventionally, the empty
word ε is central (in this case, p = q = 1). It is well known (see [2, 8]) that the
set PER coincides with the set of palindromic prefixes of all standard Sturmian
words, so that PER ⊆ St∩PAL. However, the previous inclusion is strict since
there exist non-central Sturmian palindromes, for instance abba. The set PER
is particularly important because a finite word is Sturmian if and only if it is a
factor of a central word, i.e., St = Fact (PER). We shall prove (Corollary 2) a
similar characterization for Sturmian palindromes.

Theorem 1. Every palindromic factor of a standard Sturmian word cα is a
median factor of a palindromic prefix of cα.

The result is attributed to A. de Luca [7] by J.-P. Borel and C. Reutenauer, who
gave a geometrical proof in [3]. We shall see later a direct proof which does not
use geometrical arguments.

Corollary 2. A word is a Sturmian palindrome if and only if it is a median
factor of some central word.

Proof. Trivially, every median factor of a palindrome is itself a palindrome. Since
St = Fact (PER), it follows that a median factor of an element of PER is a
Sturmian palindrome.

Conversely, let u be in St∩PAL. By definition, there exists an infinite (stan-
dard) Sturmian word s such that u ∈ Fact (s). By Theorem 1, u is a median
factor of a palindromic prefix of s. Since palindromic prefixes of standard Stur-
mian words are exactly the elements of PER, the result follows. ��

Our proof of Theorem 1, which follows a simple argument suggested by A. Carpi
[4], is based on the following results (see [7]):

Proposition 3. If w ∈ Fact (x), where x is an infinite Sturmian word, then the
reversal w∼ is a factor of x too. Moreover, if x is standard, then w is a right
special factor of x if and only if w∼ is a prefix of x.

Corollary 4. A palindromic factor of an infinite standard Sturmian word x is
a right special factor of x if and only if it is a palindromic prefix of x.

Proof (of Theorem 1). By contradiction, let cα = λux, where u is a palindrome
that is not a median factor of any palindromic prefix of cα, and λ ∈ A∗ has
minimal length for such condition. Since u cannot be a prefix of cα, we have
|λ| ≥ 1. Thus we can assume, without loss of generality, λ = λ′a. Now let z be
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the first letter of x, so that x = zx′. Suppose first z = a. The palindrome aua
is not a median factor of a palindromic prefix of cα, otherwise so would be u.
But cα = λ′auax′ with |λ′| < |λ|, and this contradicts the minimality of |λ|.
Therefore z = b, and then aub and bua = (aub)∼ are factors of cα. This means
in particular that u is a right special factor of cα. Corollary 4 then implies that
u is a prefix of cα, a contradiction. ��

4 Main Results

4.1 Enumeration of Sturmian Palindromes

In this section we shall give an explicit formula for the enumeration function of
St ∩ PAL. We start by recalling some basic facts (see [7, 8]):

Proposition 5. Let w be a word. The following conditions are equivalent:

1. w ∈ PER,
2. awb and bwa are Sturmian,
3. awa, awb, bwa, and bwb are all Sturmian.

Proposition 6. If wa and wb are Sturmian words, then there exists a letter
x ∈ A such that xwa and xwb are both Sturmian.

We now prove two easy consequences (see also [7]):

Proposition 7. Let w ∈ A∗ be a palindrome. If wa and wb are Sturmian, then
w is central.

Proof. From the previous proposition, there exists a letter x ∈ A such that xwa
and xwb are both Sturmian. Without loss of generality, we may suppose x = a, so
that awb ∈ St. Therefore (awb)∼ = bwa is Sturmian too, thus by Proposition 5
w is central. ��

Lemma 8. Let w be a Sturmian palindrome. If w is not central, then there
exists a unique letter x ∈ A such that xwx is Sturmian.

Proof. If awa and bwb are both Sturmian, then w is central by Proposition 7, a
contradiction. However, by Corollary 2, w is a (proper) median factor of some
central word. ��

Now let us introduce the function g : N → N defined for all n ≥ 0 as

g(n) := card(St ∩ PAL ∩ An) .

For any n ≥ 0, g(n) counts the number of Sturmian palindromes of length n.

Theorem 9. For any n ≥ 0, the number g(n) of Sturmian palindromes of length
n is given by:

1 +
	n/2
−1∑

i=0

φ(n− 2i) (1)
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where φ is Euler’s totient function. Equivalently, for any n ≥ 0

g(2n) = 1 +
n∑

i=1

φ(2i) and g(2n + 1) = 1 +
n∑

i=0

φ(2i + 1) .

Proof. Given w ∈ St ∩ PAL, at least one of its “extensions” awa and bwb is
Sturmian. Indeed, according to Lemma 8, if w /∈ PER, then exactly one of these
extensions is in St. If w ∈ PER, then from Proposition 5, both awa and bwb are
Sturmian palindromes. Since the number of central words of length n is φ(n+2)
(see [8]), one gets:

g(n + 2) = g(n) + φ(n + 2)

and this implies the desired formula, because g(0) = 1 and g(1) = 2. ��

We define a function f : N → N by setting, for n ≥ 0:

f(2n) = 1 +
n(n + 1)

2
and f(2n + 1) = 2 + n(n + 1) .

It is easy to verify that g(n) ≤ f(n) for all n ≥ 0. Moreover, for any n ≥ 0 we
set h(n) = card(PER ∩ An) = φ(n + 2). In Table 1 we list the values of the
functions g, f , and h for 0 ≤ n ≤ 17.

Table 1. The functions g, f , and h

n g(n) f(n) h(n) n g(n) f(n) h(n)

0 1 1 1 9 20 22 10
1 2 2 2 10 14 16 4
2 2 2 2 11 30 32 12
3 4 4 4 12 18 22 6
4 4 4 2 13 42 44 8
5 8 8 6 14 24 29 8
6 6 7 4 15 50 58 16
7 14 14 6 16 32 37 6
8 10 11 4 17 66 74 18

As an example, in Table 2 we report the set of all 14 Sturmian palindromes
of length 7. The six central words in it are underlined.

4.2 Structural Properties

We have seen in Section 3 that a Sturmian palindrome is a median factor of a
central word. In this section we shall give some further results concerning the
structure of Sturmian palindromes.
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Table 2. Sturmian palindromes of length 7 (central words are underlined)

aaaaaaa bbbbbbb
aaabaaa bbbabbb
aababaa bbababb
abaaaba babbbab
abababa bababab
abbabba baabaab
abbbbba baaaaab

Proposition 10. A palindrome w ∈ A∗ with minimal period πw > 1 can be
uniquely represented as

w = w1xyw2 = w2yxw
∼
1

with x, y ∈ A, w2 the longest proper palindromic suffix of w, and |w1xy| = πw.
The word w is not central if and only if either w1 /∈ PAL or w = (w1xx)kw1

where k ≥ 1 is the order of w.

Proof. As is well known (cf. [7]), a palindrome w has a period p < |w| if and
only if it has a palindromic suffix (prefix) of length |w| − p. Since the minimal
period πw of a palindrome is less than |w| and πw > 1, it follows that w can be
uniquely factorized as w = w1xyw2 where w2 is the longest proper palindromic
suffix of w and |w1xy| = πw. Since w is a palindrome, we can write

w = w1xyw2 = w2yxw
∼
1 .

From a classic result on central words (see [7]), when πw > 1, w is central if and
only if w1 ∈ PAL and x �= y. Therefore, in the case w1 ∈ PAL, w is not central
if and only if w = w1xxw2 = w2xxw1. The word w has the two periods

πw = |w1xx| and q = |w2xx| (2)

and length πw + q − 2. Thus w /∈ PER if and only if d = gcd(πw, q) > 1.
Since |w| ≥ πw + q − d, by Fine and Wilf’s theorem (cf. [10]) w has the period
d ≥ πw. This occurs if and only if q = kπw with k ≥ 1. From (2) this condition
is equivalent to the statement w2xx = (w1xx)k, i.e., w = (w1xx)kw1. ��
Example 11. Let w = aaabaaaaaabaaa ∈ St ∩ PAL, with πw = 7. The word w
can be factorized as (aaaba)aa(aaabaaa), where aaabaaa is the longest proper
palindromic suffix of w, |aaaba| = πw − 2 = 5. The prefix aaaba is not a palin-
drome, thus w is not central.

Let v = abaababababaaba ∈ St ∩ PAL. We factorize v as

v = (abaabab)ab(abaaba)

where abaaba is the longest proper palindromic suffix of v. Also in this case
abaabab is not a palindrome, so that w /∈ PER.

Let u = abbabbabba ∈ St ∩ PAL. We factorize u as (a)bb(abbabba), where
abbabba is the longest palindromic suffix of u. In this case, the prefix a is a
palindrome, and u = (abb)3a. Hence u is not central.
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Lemma 12. If w = w1xyw2 = w2yxw
∼
1 , where w2 is the longest proper palin-

dromic suffix of w and x, y ∈ A, then w′ = ywy has the minimal period πw′ = πw.

Proof. Since w is a factor of w′, one has πw′ ≥ πw. The word yw2y is a palin-
dromic proper suffix of w′ = yw1xyw2y, so that w′ has the period |yw1x|. Hence,
πw′ ≤ |yw1x| = |w1xy| = πw. Thus πw = πw′ . ��

The next lemma is essentially a restatement of Lemma 2 in [5]. Note that its
first part is an obvious consequence of Lemma 12.

Lemma 13. Let w = w1xyw2 = w2yxw1 ∈ PER, with |w2| > |w1|, {x, y} = A.
The word v = ywy has minimal period πv = πw, whereas v′ = xwx = xw1xyw2x
has minimal period πv′ = |w2|+ 2 = |w| − πw + 2.

Let w ∈ (St ∩ PAL) \ PER. We denote by u the (unique) shortest median
extension of w in PER, and by v the longest central median factor of w. Note
that also v is unique.

Theorem 14. Let w ∈ (St ∩ PAL) \ PER. With the preceding notation, one
has πu = πw. Moreover, either πw = πv or πw = |v| − πv + 2.

Proof. We consider first the case that πv = 1, so that v = xn with x ∈ A.
In such a case w has also the median palindromic factor v1 = yxny, where
{x, y} = A (recall that v is the longest central median factor of w). Moreover,
n = |v| is at least 2, otherwise v1 would be equal to yxy ∈ PER. One has
πv1 = |yxn| = n + 1 = |v| − πv + 2. Now we define, for 2 ≤ i ≤ n:

vi = xvi−1x = xi−1yxnyxi−1 = (xi−1yxn−i+1)(xi−1yxi−1) . (3)

The word vn = xn−1yxnyxn−1 is central, whereas for i < n one has vi /∈ PER.
From Lemma 8 it follows that the words vi are the only Sturmian extensions of
v1 which are median factors of vn. Since for i < n one has vi /∈ PER, one derives
that w = vk for some 1 ≤ k < n, and u = vn. As shown in (3), by Lemma 12
all the vi’s have the same period, for 1 ≤ i ≤ n. The result in this case follows:
πw = πu = |v| − πv + 2.

Now let us assume πv > 1. In this case v = w1xyw2 = w2yxw1, with w1, w2 ∈
PAL, x �= y. We suppose |w1| < |w2|, so that πv = |w1|+ 2. From the definition
of v, it follows that there exists a letter z ∈ A such that v1 = zvz is a median
factor of w which is not central. By Lemma 13, we have πv1 = πv if z = y, or
else πv1 = |v| − πv + 2 if z = x.

Using Lemma 12, we shall now define a sequence of palindromes with the
same minimal period as v1. Let us first suppose that z = y, so that v1 =
yw1xyw2y. We set v2 = xv1x = (xyw1)(xyw2yx). Moreover, if w1 = p1p2 · · · pk

with pj ∈ A for 1 ≤ j ≤ k, we set vi = pk−i+3vi−1pk−i+3 for i ≥ 3, so that

v3 = pkv2pk = (pkxyp1 · · · pk−1)(pkxyw2yxpk) ,

...
vk+2 = p1vk+1p1 = p1 · · · pkxyw1xyw2yxpk · · · p1 = w1xyw1xyw2yxw

∼
1 .
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Since w1 = w∼
1 , the last equation can be written as

vk+2 = (w1)xy(w1xyw2yxw1) = (w1xyw2yxw1)yx(w1)

showing, by Proposition 10, that the word vk+2 is central, so that for any i ≤
πv = k + 2, vi ∈ St ∩ PAL. Let s ≤ k + 2 be the minimal integer such that
vs ∈ PER. Since for i < s one has vi /∈ PER, and from Lemma 8, one derives
that u = vs and w = vr for some integer r < s. One has πw = πvs = πu, and in
this case πw = πv.

The case z = x is similarly dealt with, but interchanging the roles of w1

and w2. Thus one assumes w2 = q1 · · · qk, and defines vi as qk−i+3vi−1qk−i+3 for
i ≥ 3, starting from v2 = yv1y = (yxw2)(yxw1xy) and ending with

vk+2 = w2yxw2yxw1xyw2 ∈ PER .

Therefore there exist integers r, s such that 1 ≤ r < s ≤ k + 2 = |v| − πv + 2,
w = vr , and u = vs, so that πw = πu and πw = πv1 = |v| − πv + 2. ��

Example 15. Let w = baaabaaab ∈ (St ∩ PAL). Following the notations of
Theorem 14, one has v = aaabaaa, v1 = w, and u = v3 = aabaaabaaabaa. Thus
πw = πu = πv = 4.

Let w = babbbbab. In this case we have v = bbbb, w = v2, and u = v4 =
bbbabbbbabbb, so that πw = πu = 5 = |v|+ 1 = |v| − πv + 2.

For any word w ∈ A∗, we denote by Rw the minimal nonnegative integer such
that there is no right special factor of w of length Rw, and by Kw the length of
the shortest unrepeated suffix of w. Conventionally, one assumes Rε = Kε = 0.
The following theorem gives a further criterion, different from Proposition 10,
to discriminate whether a (Sturmian) palindrome over A is central or not.

Theorem 16. Let w ∈ A∗ be a palindrome, with πw > 1. Then w is central if
and only if its prefix of length πw − 2 is a right special factor of w.

Proof. From Proposition 10, we can write

w = w1xyw2 = w2yxw
∼
1 (4)

where x, y ∈ A, w2 is the longest proper palindromic suffix of w, |w1| = πw − 2,
and w is central if and only if w1 ∈ PAL and x �= y. Therefore we have to prove
that w1 is a right special factor of w if and only if w1 = w∼

1 and x �= y.
Indeed, assume that these two latter conditions are satisfied. Since w∼

1 = w1

and w2 is the longest proper palindromic suffix (and prefix) of w, one has that
w1 is a proper prefix and suffix of w2. This implies, from (4), that w1 is a right
special factor of w.

Conversely, suppose w1 is a right special factor of w. Let us first prove that
w1 ∈ PAL. By hypothesis, we have πw−2 = |w1| ≤ Rw−1, that is Rw ≥ πw−1.
Since in general one has πw ≥ Rw + 1 (see [6, Corollary 5.3]), it follows πw =
Rw + 1. This implies |w| = Rw + Kw, again by [6, Corollary 5.3]. The suffix w∼

1
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of w is repeated, because w1 is a right special factor of w, which is a palindrome.
This leads to

πw − 2 = |w∼
1 | ≤ Kw − 1

and thus to |w| = Rw +Kw ≥ 2πw−2. If |w| = 2πw−2, then |w1| = |w2| so that
one derives w1 = w2 ∈ PAL. If |w| ≥ 2πw − 1, then w has the prefix w1xyw1x,
so that yw1x ∈ Fact (w). Let z be the letter such that A = {x, z}. The word
w1z is a factor of w because w1 is right special. Moreover, since w1z is not a
prefix, there exists a letter y′ such that y′w1z ∈ Fact (w). One has y �= y′, for
otherwise yw1 would be a right special factor of w of length πw−1 = Rw, which
is a contradiction. As w is a palindrome, the words xw∼

1 y and zw∼
1 y′ are factors

of w too, so that w∼
1 is a right special factor of w. By [6, Proposition 4.7], this

implies w1 = w∼
1 . Therefore we get w1 ∈ PAL again.

We shall now prove that x �= y. By contradiction, suppose w has the factor-
ization

w = (w1xx)kw1 , with k ≥ 1

as granted by Proposition 10. As before, assume A = {x, z}. Since w1 is a right
special factor of w, one has w1z ∈ Fact (w). Thus we have either w1z = xw1

or w1z = v2xxv1z, where v1z is a prefix of w1 and v2 is a suffix of w1. Since
|w1| = |w1z| − 1, we can write w1 = v1zαv2, with α ∈ A. The first case is
impossible since w1 is a palindrome and x �= z. In the latter case, one obtains:

v1zαv2 = w1 = w∼
1 = v∼1 xxv∼2

which is absurd again, because x �= z. ��

Example 17. The word w = baab is a Sturmian palindrome of minimal period
πw = 3. Its prefix of length 1 is not a right special factor, hence w /∈ PER.
The word v = abababbababa is a Sturmian palindrome having minimal period 7,
and its prefix ababa of length 5 is not right special. Therefore v /∈ PER. On the
contrary, the word u = aabaabaa has minimal period 3, and its prefix of length
1 is a right special factor, so that u is central.

Proposition 18. A palindrome w ∈ A∗ is Sturmian if and only if πw = Rw +1.

Proof. The result is trivially true if πw = 1. Since for any w ∈ A∗ one has
πw ≥ Rw +1 (cf. [6]), in the case πw > 1 the condition πw = Rw +1 is equivalent
to the existence of a right special factor s of w of length |s| = πw − 2.

Let us first prove that every Sturmian palindrome w such that πw ≥ 2 has
such a factor. If w is central, the result follows directly from Theorem 16. Thus
we suppose w /∈ PER, and as in Theorem 14 we denote by v the central median
factor of w of maximal length. If πv = 1, then there exists a letter x ∈ A and
an integer n ≥ 1 such that v = xn. From the maximality condition, one has
n > 1. In this case, by Theorem 14 one derives πw = |v| + 1 = n + 1 and
yxny ∈ Fact (w), where {x, y} = A; therefore xn−1 is the desired right special
factor of w, of length n− 1 = πw − 2. If πv > 1, using Proposition 10 we write
v as v1xyv2, with πv = |v1xy|. By Theorem 14, one has either πw = πv or
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πw = |v| − πv + 2. In the first case, the result is a consequence of Theorem 16.
Indeed, the prefix v1 of the central word v, whose length is πv − 2 = πw − 2, is a
right special factor of v, and then of w. In the latter case, one derives that the
word xvx = xv1xyv2x = xv2yxv1x is a factor of w, so that v2 is a right special
factor of w, of length |v| − πv = πw − 2.

Conversely, let us assume that w has a right special factor s with |s| = πw−2.
By Proposition 10, one can write

w = w1xyw2 = w2yxw
∼
1

with x, y ∈ A, |w1xy| = πw. Moreover, let k be the order of w. By definition,
k is the maximal integer such that (w1xy)k is a prefix of w. This implies, by
periodicity, that w is a prefix of (w1xy)k+1. By applying repeatedly Lemma 12,
one obtains that the word u = (w1xy)k+1w(yxw∼

1 )k+1 has minimal period πw.
Since s ∈ Fact ((w1xy)k+1), there exists a median factor t of u which starts
with s and has w as a factor, i.e., t = sδwδ∼s∼ for some word δ. We have
πw ≤ πt ≤ πu = πw , therefore from Theorem 16 it follows that t ∈ PER,
whence w ∈ St. ��

Example 19. Let w = abba ∈ St∩PAL. One has πw = 3 = Rw+1. The Sturmian
word u = ababaa is not a palindrome, but πu = 5 = Ru + 1. However, the word
v = aabab ∈ St has πv = 5 > 3 = Rw + 1.

The palindrome word s = aabbaa is not Sturmian. One has πs = 4 > 3 =
Rs + 1.
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Abstract. In this paper are considered one-dimensional tilings arising
from some Pisot numbers encountered in quasicrystallography as the
quadratic Pisot units and the cubic Pisot unit associated with 7-fold
symmetry, and also the Tribonacci number. We give characterizations of
the Voronoi cells of such tilings, using word combinatorics and substitu-
tions.

1 Introduction

Word combinatorics has been proved to be very useful in the solution of problems
arising from the modelization of metallic alloys called quasicrystals. The first
quasicrystal was discovered in 1984: it is a solid structure presenting a local
symmetry of order 5, i.e. a local invariance under rotation of π/5, and it is
linked to the golden mean and to the Fibonacci substitution. The Fibonacci
substitution, given by

L �→ LS, S �→ L,

defines a quasiperiodic selfsimilar tiling of the positive real line, and is a historical
model of a one-dimensional mathematical quasicrystal. The fixed point of the
substitution is the infinite word

LSLLSLSLSL · · ·

Each letter L or S is considered as a tile. The vertices of the tiles are labelled
by algebraic integers, the so-called β-integers, where β is equal to 1+

√
5

2 . The
description and the properties of those β-integers use a base β number system.

A more general theory has been elaborated with Pisot numbers1 for base,
see [3, 6]. Note that so far, all the quasicrystals discovered by physicists present
local symmetry of order 5, 8, 10, or 12, and are modelized using some quadratic
Pisot units, namely 1+

√
5

2 , 1 +
√

2, and 2 +
√

3. More generally, a substitution
can be associated with any Pisot number giving a selfsimilar quasiperiodic tiling
of the positive real line [19].

1 A Pisot number is an algebraic integer > 1 such that the other roots of its minimal
polynomial have a modulus less than 1. The golden mean and the natural integers
are Pisot numbers

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 209–223, 2005.
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The construction of quasiperiodic point sets involves a method called cut and
projection [12, 13]. The determination of the quasicrystal depends on a set called
window. For instance, when β is the Tribonacci number, the window of the set
of β-integers is the well known Rauzy fractal, see [11] for instance.

The purpose of this work is to give a combinatorial characterization of the
geometry of tilings associated with sets of beta-integers. More precisely we show
that local geometrical configurations of beta-integers, given by their Voronoi
cells, are characterized by their beta-expansions. This allows to give a fine parti-
tion of the window associated with positive beta-integers according to the com-
binatorial properties of the underlying numeration system.

It is worthwile to mention that the fixed point uβ of the substitutions as-
sociated with the Pisot numbers β considered here enjoys the following prop-
erties. When β is a quadratic Pisot unit, uβ is a Sturmian sequence [6], that
is to say, the number C(n) of factors of length n, is equal to n + 1. When β
is the Tribonacci number, uβ is an Arnoux-Rauzy sequence [1], of complexity
C(n) = 2n+ 1. When β is the cubic Pisot unit associated with 7-fold symmetry,
uβ has complexity C(n) = 2n + 1, but is not an Arnoux-Rauzy sequence [7].

The paper is organized as follows: after some definitions, we give charac-
terizations of the Voronoi cells of the tilings associated with quadratic Pisot
units, with the Tribonacci number and, with the cubic Pisot unit associated
with 7-fold symmetry. These results are given in terms of the properties of the
beta-expansions as words, and by the belonging of the conjugates of beta-integers
to some connected region, the window. For the Tribonacci number, our results
allow to give a nice combinatorial interpretation of the domain exchange defined
by Rauzy on the Rauzy fractal, see [11, 15, 16].

2 Preliminaries

2.1 Words

Let A be a finite set of symbols called the alphabet. We denote by A∗ the set of
finite words over A, and by ε the empty word. A factor of a word x is a word z
such that x = yzt. If y = ε, z is said to be a prefix of x; if t = ε, the word z is
a suffix of x. A prefix (or a suffix) z of y is proper if it is different of the entire
word y. If v is a word, the concatenation of v k times is denoted by vk, with the
convention that if k = 0, vk is the empty word ε.

A function f : A∗ → B∗ is a morphism if f(xy) = f(x)f(y), for all x, y ∈ A∗.
A morphism is a substitution if for each a in A, f(a) �= ε.

The radix order for finite words over an ordered alphabet is defined by x � y
if |x| < |y|, or |x| = |y| and their exist factorizations x = uax′ and y = uby′, for
some word u ∈ A∗, a, b ∈ A such that a � b, and x′, y′ ∈ A∗.

The set of infinite words over A is denoted by AN. It is the set of sequences
of symbols of A indexed by non-negative integers. Denote by vω = vvvv . . . the
word obtained by the infinite concatenation of the word v. A word of the form
uvω is called eventually periodic if u �= ε, periodic otherwise.
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The lexicographic order for infinite words over an ordered alphabet is defined
by x <lex y if their exist factorizations x = uax′ and y = uby′, for some word
u ∈ A∗, a, b ∈ A such that a < b, and x′, y′ ∈ AN.

2.2 Beta-Expansions

For definitions and results on beta-expansions the reader may consult [10, Chap-
ter 7]. Let β > 1 be a real number. A representation in base β, or a β-
representation, of a real number x > 0 is an infinite sequence of integers (xi)i�N

such that x =
∑

i�N xiβ
i, for some N . A particular β-representation, called

β-expansion, is computed by the “greedy algorithm” [17]. Denote by "y# and by
{y} the integer part and the fractional part of the real number y, respectively.
There exists N ∈ Z such that βN � x < βN+1. Let xN = "x/βN #, and let
rN = {x/βN}. Then for i < N , xi = "βri+1#, and ri = {βri+1}. If x < 1, then
N < 0 and we set x−1 = · · · = xN+1 = 0. The β-expansion of x is denoted by

〈x〉β = xNxN−1 · · ·x1x0 · x−1x−2 · · · ,

most significant digits first. The dot between x0 and x−1 symbolizes the sep-
aration between positive and negative powers of the base. By abuse we refer
to the word xN · · ·x0 as the β-integer part, and to the word x−1x−2 · · · as the
β-fractional part of x in base β. The digits xi obtained by the greedy algorithm
belong to the set B = {0, 1, . . . , "β#}, called the canonical alphabet associated
with β, if β is not an integer. If β is an integer, then B = {0, 1, . . . , β−1}, and the
β-expansion is just the standard representation in base β. If a β-representation
ends with infinitely many 0’s it is said to be finite and the ending 0’s are omitted.

A word (finite or infinite) is said to be admissible if it is the β-expansion
of some number of [0, 1[. Let us introduce the so called Rényi β-expansion of
1, denoted by dβ(1). It is computed as follows: let the β-transform of the unit
interval be defined by Tβ(y) = βy mod 1. Then dβ(1) = (ti)i�1, where ti =
"βT i−1

β (1)#. Note that dβ(1) belongs to BN. A number β such that dβ(1) is
eventually periodic is called a beta-number, or a Parry number. When dβ(1) is
finite, β is said to be a simple Parry number. Set d∗β(1) = dβ(1) if dβ(1) is
eventually periodic, and d∗β(1) = (t1 · · · tm−1(tm − 1))ω if dβ(1) = t1 · · · tm−1tm
is finite. Let us recall the following result from [14]: An infinite sequence of
non-negative integers ξ = (ξi)i�1 is admissible if and only if for every p � 0,
(ξi+p)i�1 <lex d∗β(1). We can now define the set of β-integers.

Definition 1 The set of β-integers is the set of real numbers such that the β-
expansion of their absolute value has a β-fractional part equal to 0ω

Zβ = {x ∈ R | 〈|x|〉β = xNxN−1 · · ·x1x0, N � 0} . (1)

Denote Z+
β the set of non-negative β-integers. Note that Zβ = Z+

β ∪ (−Z+
β )

and that βZβ ⊂ Zβ . The set Z+
β is ordered by the radix order on the (finite)

β-expansions of its elements; its n-th element is denoted bn.
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An algebraic integer is a root of a monic polynomial with integer coefficients.
A Pisot number is an algebraic integer greater than 1 such that the other roots
of its minimal polynomial have a modulus smaller than 1. When the constant
term of the minimal polynomial is equal to ±1, β is said to be a unit. Recall
that any Pisot number is a Parry number [2, 18].

2.3 Substitution Tilings

Let β be a Parry number. To such a number a substitution σβ can be associated
with β in a canonical way. Its fixed point uβ is written on an alphabet A of
letters that are considered as tiles. This defines a tiling of the positive real line
with a finite number of tiles. Each tile U is given a length �(U), see [5, 19]. Each
vertex of the positive real line is labelled by the length in tiles of the prefix of
uβ ending in that vertex.

In the frame of this study, we restrict ourselves to a subclass of Parry num-
bers, namely the quadratic Pisot units and two examples of cubic Pisot units.

Quadratic Pisot Units. They are of two types.

Case 1. β > 1 is the root of the polynomial X2− aX − 1, a � 1. The canonical
alphabet is B = {0, 1, . . . , a}, the β-expansion of 1 is finite and equal to dβ(1) =
a1. Note that a word on B is a β-expansion if and only if it does not contain a
factor a1. The substitution σβ is defined on the alphabet A = {L, S} by

σβ =

{
L �→ LaS

S �→ L .
(2)

To each letter of A we associate a tile with the same name of length �(L) = 1,
and �(S) = Tβ(1) = β − a = 1/β.

Case 2. β > 1 is the root of the polynomial X2− aX + 1, a � 3. The canonical
alphabet is B = {0, 1, . . . , a− 1}, the β-expansion of 1 is eventually periodic and
equal to dβ(1) = (a− 1)(a− 2)ω. The substitution σβ is defined on the alphabet
A = {L, S} by

σβ =

{
L �→ La−1S

S �→ La−2S .
(3)

Here we have �(L) = 1, and �(S) = Tβ(1) = β − (a− 1) = 1− 1/β.

Cubic Pisot Units. We consider two particular cases of cubic Pisot units,
namely the roots of the polynomials

X3 −X2 −X − 1, Case 1

X3 − 2X2 −X + 1, Case 2.

The root β > 1 in Case 1 is the so-called Tribonacci number, see for instance [11].
The root β in Case 2 is a cyclotomic Pisot unit with a 7-fold symmetry, that
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is to say, the ring Z[ei2π/7], which is invariant by rotation of 2π/7, satisfies
Z[ei2π/7] = Z[β] + Z[β]ei2π/7, see [3].
Case 1. The Tribonacci number. The canonical alphabet is B = {0, 1}, the β-
expansion of 1 is finite and equal to dβ(1) = 111. A word on B is a β-expansion
if and only if it does not contain a factor 111. The substitution σβ is defined on
the alphabet A = {L,M, S} by

σβ =

⎧⎪⎨⎪⎩
L �→ LM

M �→ LS

S �→ L .

(4)

We have �(L) = 1, �(M) = Tβ(1) = β − 1, and �(S) = T 2
β (1) = β2 − β − 1.

Case 2. Symmetry of order 7. The canonical alphabet is B = {0, 1, 2}, the
β-expansion of 1 is eventually periodic and equal to dβ(1) = 2(01)ω. The sub-
stitution σβ is defined on the alphabet A = {L,M, S} by

σβ =

⎧⎪⎨⎪⎩
L �→ LLS

S �→M

M �→ LS

(5)

Here we have �(L) = 1, �(S) = Tβ(1) = β − 2, and �(M) = T 2
β (1) = β2 − 2β.

For all the above cases, the infinite word uβ = σ∞
β (L) is the fixed point of

the substitution σβ . The interval [0, βj ] is tiled by the tiling associated with the
word σj

β(L). Consequently the tiling associated with σ∞
β (L) is a selfsimilar tiling

of the positive real line and positive β-integers are the labels of the vertices of
this tiling, see [3, 6]. The substitution σβ acts on the tiles as the multiplication
by β acts on β-integers.

Example Let ϕ = 1+
√

5
2 . Then dϕ(1) = 11. The associated substitution is the

Fibonacci substitution L �→ LS, S �→ L. We have �(L) = 1, and �(S) = ϕ − 1.
The first non-negative ϕ-integers are

b0 = 0 〈b0〉ϕ = 0
b1 = 1 〈b1〉ϕ = 1
b2 = ϕ 〈b2〉ϕ = 10
b3 = ϕ2 〈b3〉ϕ = 100
b4 = ϕ2 + 1 〈b4〉ϕ = 101
b5 = ϕ3 〈b5〉ϕ = 1000

The fixed point of the substitution is

uϕ = LSLLSLSLSL · · ·
Below is shown the beginning of the labelling of vertices of the Fibonacci

tiling by ϕ-integers
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2.4 Meyer Sets and Voronoi Cells

We recall here several definitions and results that can be found in [8, 9, 12, 13],
see also [4] for a survey on these questions. Delaunay sets were introduced as a
mathematical idealization of a solid-state structure. A set Λ in Rd is said to be
uniformly discrete if there exists r > 0 such that every ball of radius r contains
at most a point of Λ. A set Λ in Rd is said to be relatively dense if there exists
R > 0 such that every ball of radius R contains at least a point of Λ. If both
conditions are satisfied, Λ is said to be a Delaunay set.

Meyer introduced in [12, 13] the mathematical notion of quasicrytals as a
generalization of ideal crystalline structures. They are now known as Meyer
sets. A set Λ ⊂ Rd is said to be a Meyer set if it is a Delaunay set and if there
exists a finite set F such that Λ−Λ ⊂ Λ+F . This is equivalent to Λ−Λ being a
Delaunay set [8]. The Meyer sets generalize the lattices of crystallography, that
obey the relation Λ− Λ ⊂ Λ.

We now give the definition of Voronoi cells and of Voronoi tessellation.

Definition 2 (i) Given a discrete set Λ in Rd, the Voronoi cell V(λ) of λ ∈ Λ
is the closure of the set of all points in Rd closer to λ than to any other point of
Λ

V(λ) = {x ∈ Rd | δ(x− λ) � δ(x− λ′), λ′ ∈ Λ} , (6)

where δ is the Euclidean distance in Rd.
(ii) The set of Voronoi cells of a discrete set Λ forms a tiling of Rd called

the Voronoi tessellation of Rd induced by Λ.

Lagarias has proved in [9] that if Λ is a Meyer set, its Voronoi tessellation contains
a finite number of tiles. It is proved in [3] that when β is a Pisot number, then
the set Zβ of β-integers is a Meyer set.

There is a special class of Meyer sets, defined by Meyer [12, 13], called model
sets, computed by the so called cut and project algorithm and in which arises the
notion of window. In the frame of this article, we introduce the algebraic version
of the cut and project algorithm in the particular cases we study.

Quadratic Pisot Units. Let β > 1 be a quadratic Pisot unit. Let now β′ be
the other root of the minimal polynomial associated with β, and let the Galois
conjugation automorphism be the map x =

∑
0�i�N xiβ

i �→ x′ =
∑

0�i�N xiβ
′i.

We define the window of positive β-integers as the compact set Ω

Ω = {x′ | x ∈ Z+
β } = (Z+

β )′ . (7)

We know from [3] that a a number x of Z[β] ∩ R+ is a positive β-integer if
and only if its conjugate x′ belongs to the window Ω = (−1, β) in Case 1, and
Ω = (0, β) in Case 2.

Cubic Pisot Units. We have to consider our two cases separately.
Case 1. Let β > 1 be the Tribonacci number, and let α and αc be its Galois
conjugates (the symbol c denotes complex conjugation). The Galois conjugation
automorphism is defined as x =

∑
0�i�N xiβ

i �→ x′ =
∑

0�i�N xiα
i. Then the
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window Ω of Z+
β is a compact subset of C with a fractal boundary, see for

instance Figure 3. This figure is called the Rauzy fractal [11, 16].
Case 2. Let β > 1 be the dominant root of the polynomial X3 − 2X2 −X + 1.
The other roots of this polynomial are the real numbers α1 = β2 − 2β and
α2 = −β2 + β + 2. The Galois automorphism is x =

∑
0�i�N xiβ

i �→ x′ =∑
0�i�N xi(αi

1 + αi
2e

i4π/7).

The definition of the window Ω of positive β-integers is again given by Equa-
tion (7). Note that, unless for quadratic Pisot units, the determination of the
window of positive β-integers is an open problem, see discussion in [6].

3 Beta-Integers Voronoi Cells

We shall now study the Voronoi tessellation of Z+
β , and characterize Voronoi

cells of β-integers when β is a quadratic Pisot unit, the Tribonacci number, or
a cubic Pisot unit associated with 7-fold symmetry.

When a β-integer is the common vertex of the generic tiles U and V , it is
said to be an UV β-integer, and its Voronoi cell is consequently said to be an
UV Voronoi cell. The window associated with positive UV β-integers is denoted
by ΩUV , and is given by

ΩUV = {x′ | x ∈ Z+
β , x is UV } .

Since a negative β-integer b−n is by definition equal to −bn, by symmetry
one obtains a tiling of the negative real line, and thus the beta-integer b0 = 0 is
always of type LL.

3.1 Quadratic Pisot Units

Recall that from the substitution σβ we have only three possible tile-configu-
rations, LL, LS and SL, since SS is excluded, so there are only three possible
Voronoi cells. When a β-integer is SL or LS, the length of its Voronoi cell is
(1 + 1/β)/2 in Case 1, and (2 − 1/β)/2 in Case 2. Figure 1 displays the case
when the nth β-integer is SL. When a β-integer is LL the length of its Voronoi
cell is 1.

We will see in the following that it is possible to further differentiate Voronoi
cells, from the analysis of the β-expansion of the β-integer they support.

Fig. 1. Configuration where the nth β-integer, bn, is SL

Case 1. β2 = aβ + 1, a � 1
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Proposition 1 In each of the following assertions, (i), (ii) and (iii) are equiv-
alent.

1.1 (i) bn is SL; (ii) 〈bn〉β ends in the suffix (0)2q+1, q ∈ N maximal; (iii)
b′n ∈ ΩSL = (−1, 0).

1.2 (i) bn is LL; (ii) for n � 1, 〈bn〉β ends in either the suffix (0)2q+2, q ∈ N
maximal, or by an h ∈ {1, . . . , a− 1}; (iii) b′n ∈ ΩLL = [0, β − 1).

1.3 (i) bn is LS; (ii) 〈bn〉β ends in a; (iii) b′n ∈ ΩLS = (β − 1, β).

Proof We prove Proposition 1 in two steps. First we prove that (i) ⇔ (ii) by
recurrence. Recall that the set Zβ is symmetric with respect to the origin by
definition, which makes the origin b0 = 0 a LL β-integer. We have b′0 = 0. The
relations are clearly valid for small n � 1.

Suppose that bn is an SL β-integer. In the fixed point of the substitution
uβ = σ∞

β (L), the factor SL can appear in two different configurations.
In the first configuration SL is a factor of LaSLaS. We thus have bn = βbk,

where bk is a LL β-integer,

bn

LaS | LaS
↑ ↑

bk

L | L

where the upright arrow symbolizes the action of the substitution σβ on a given
tile. By recurrence hypothesis, 〈bk〉β ends either with an h ∈ {1, 2, . . . , a − 1}
and then 〈bn〉β ends in h0, or 〈bk〉β ends in (0)2q+2, q ∈ N maximal and then
〈bn〉β ends in (0)2q+3, thus 〈bn〉β ends with an odd number of 0’s. Consequently,
the β-expansions of bn+1, bn+2, . . . , bn+a−1, which are all LL β-integers, end in
1, 2, . . . , (a− 1) respectively, and the β-expansion of bn+a, which is LS, ends in
a.

In the second configuration SL is a factor of LaSLLaS thus bn = βbk where
bk is a LS β-integer. Since by recurrence hypothesis, 〈bk〉β ends in a, then 〈bn〉β
ends with a0. Recall that a1 is not admissible for such a β. Thus the β-expansion
of bn+1, which is LL, ends in j00, where j �= 0. Therefore, the β-expansion of
bn+2, . . . , bn+a, which are all LL, ends in 1, 2, . . . , a − 1, respectively, and the
β-expansion of bn+a+1, which is LS, ends in a.

The cases where bn is an LL or an LS β-integer have been already treated
just above.

Let us now show that (i) ⇔ (iii). Recall that a number x of Z[β] ∩ R+ is
a positive β-integer if and only if its conjugate x′ belongs to (−1, β). Let bn

be a SL β-integer. Then bn−1 = bn − 1
β and bn+1 = bn + 1 are β-integers, and

(bn−1)′ = b′n+β ∈ (−1, β) and (bn+1)′ = b′n+1 ∈ (−1, β). Therefore b′n ∈ (−1, 0).
Let bn be a LL β-integer. Then bn−1 = bn − 1 and bn+1 = bn + 1 are β-

integers, and (bn−1)′ = b′n − 1 ∈ (−1, β) and (bn+1)′ = b′n + 1 ∈ (−1, β). Since 0
is LL we have b′n ∈ [0, β − 1).
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Finally, let bn be a LS β-integer. Then bn−1 = bn − 1 and bn+1 = bn + 1
β

are β-integers, and (bn−1)′ = b′n − 1 ∈ (−1, β) and (bn+1)′ = b′n − β ∈ (−1, β).
Therefore b′n ∈ (β − 1, β). ��

For LL β-integers we can refine the characterization. We give a partition of
the window of LL β-integers as

ΩLL =
⋃

0�h�a−1

ΩLL(h) ,

where ΩLL(h) is the window associated with positive LL β-integers such that
their β-expansions end in h ∈ {0, · · · , a− 1}.

Proposition 2 Let bn be a LL β-integer, then 〈bn〉β ends in

2.1 (0)2q+2, q maximal in N, if and only if b′n ∈ ΩLL(0) = [0, 1
β ),

2.2 an h ∈ {1, . . . , a− 1} if and only if b′n ∈ ΩLL(h) = ( 1
β + h− 1, 1

β + h).

Proof Let us first prove 2.1. Let bn be a LL β-integer, such that 〈bn〉β ends in
(0)2q+2, q ∈ N. By Proposition 1, 1.1, the β-integer bn/β is SL, and (bn/β)′ =
−βb′n ∈ (−1, 0). Therefore bn ∈ (0, 1/β).

We prove 2.2 in two steps. Suppose that bn is a LL β-integer such that 〈bn〉β
ends in 1. There are two cases for bn−1 = bn − 1.
• bn−1 is a LL β-integer such that 〈bn−1〉β ends in (0)2q+2, q ∈ N. Thus

b′n−1 ∈ [0, 1
β ), and b′n ∈ [1, 1 + 1

β ).
• bn−1 is a SL β-integer such that 〈bn−1〉β ends with h0, h �= a. The conjugate

b′n of bn lies in the window computed as follows. Let bs be a SL β-integer such
that 〈bs〉β ends with a0. Then bs/β ends with a, and by Proposition 1, 1.3,
(bs/β)′ ∈ (β − 1, β). Thus b′s ∈ (−1,−1 + 1/β). It is obvious now that (bn−1)′ ∈
(−1 + 1/β, 0), and b′n ∈ ( 1

β , 1).
Putting the two cases together we get that b′n ∈ ( 1

β , 1 + 1
β ). The end of the

proof for any h in {1, . . . , a− 1} follows easily. ��
On Figure 2 we display the window Ω of Z+

β , when β is a quadratic Pisot
unit of Case 1, and its decomposition into subwindows which correspond to the
windows of β-integers having specific Voronoi cells.

Fig. 2. Graphical representation of Proposition 1 (iii) and Proposition 2

Case 2. β2 = aβ − 1, a � 3
Let M = (a− 1)(a − 2)∗ be the set of maximal words of each length in the

radix order. Remark that any word in M is a prefix of dβ(1) = (a− 1)(a− 2)ω.
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Proposition 3 In each of the following assertions, (i), (ii) and (iii) are equiv-
alent. For n � 1
3.1 (i) bn is SL; (ii) 〈bn〉β ends in 0; (iii) b′n ∈ ΩSL = (0, 1).
3.2 (i) bn is LL; (ii) 〈bn〉β ends in a word w /∈M∪0; (iii) b′n ∈ ΩLL = [1, β−1).
3.3 (i) bn is LS; (ii) 〈bn〉β ends in a word w ∈M; (iii) b′n ∈ ΩLS = (β − 1, β).

Proof. We prove (i)⇔ (ii) by recurrence. Suppose that bn is SL. The factor SL
can appear in three different configurations in the fixed point of the substitution
uβ.

In the first configuration SL is a factor of La−1SLa−1S where bn is issued
from the LL β-integer bk, bn = βbk.

bn

La−1S | La−1S
↑ ↑

bk

L | L

By recurrence hypothesis 〈bk〉β ends in w /∈ M ∪ 0. Then 〈bn〉β ends in w0.
Consequently, the β-expansions of bn+1, bn+2, . . . , bn+a−2, which are all LL, end
respectively by w1, w2, . . . , w(a − 2), and the β-expansion of bn+a−1, which is
LS, ends in (a− 1), which belongs to M.

In the second configuration, SL is a factor of La−1SLa−2S, and bn = βbk

with bk a LS β-integer.
bn

La−1S | La−2S
↑ ↑

bk

L | S

By recurrence hypothesis, 〈bk〉β ends in (a− 1)(a− 2)q, with q ∈ N. Then 〈bn〉β
ends in (a− 1)(a− 2)q0. Thus, the β-expansion of bn+1, bn+2, . . . , bn+a−3, which
are LL, ends in 1, 2, . . . , (a − 3), respectively, and the β-expansion of bn+a−2,
which is LS, ends in (a− 1)(a− 2)q+1 ∈ M.

In the third configuration, SL is a factor of La−2SLa−1S, bn = βbk with bk

a SL β-integer.
bn

La−2S | La−1S
↑ ↑

bk

S | L

By recurrence hypothesis 〈bk〉β ends in 0, and 〈bn〉β ends in 00. Therefore, the
β-expansion of bn+1, bn+2, . . . , bn+a−2, which are LL, ends in 01, 02, . . . , 0(a−2),
and the β-expansion of bn+a−1, which is LS, ends in 0(a− 1).
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The cases where bn is an LL or an LS β-integer have been already treated.
The case SS cannot occur.

Now let us prove (i) ⇔ (iii). Recall that a number x of Z[β] ∩ R+ is a
positive β-integer if and only if its conjugate x′ belongs to (0, β). Let bn be a
SL β-integer. Then bn−1 = bn− (1− 1/β) and bn+1 = bn +1 are β-integers, and
(bn−1)′ = b′n− 1+β ∈ (0, β) and (bn+1)′ = b′n +1 ∈ (0, β). Therefore b′n ∈ (0, 1).

Let bn be a LL β-integer. Then bn−1 = bn − 1 and bn+1 = bn + 1 are β-
integers, and (bn−1)′ = b′n − 1 ∈ (0, β) and (bn+1)′ = b′n + 1 ∈ (0, β). Therefore
b′n ∈ (1, β − 1). Since b1 = 1 is LL, b′n ∈ [1, β − 1).

Finally, let bn be a LS β-integer. Then bn−1 = bn−1 and bn+1 = bn+(1−1/β)
are β-integers, and (bn−1)′ = b′n − 1 ∈ (0, β) and (bn+1)′ = b′n + 1 − β ∈ (0, β).
Therefore b′n ∈ (β − 1, β). ��

We now precise the characterization for LL β-integers.

Proposition 4 Let bn be a LL β-integer, then 〈bn〉β ends in
4.1 an h ∈ {1, . . . , a− 3} if and only if b′n ∈ ΩLL(h) = [h, h + 1)
4.2 (a − 2) not prefixed by an element of M if and only if b′n ∈ ΩLL(a− 2) =
(a− 2, β − 1).

Proof. Let us first prove 4.1. Let bn be a LL β-integer such that 〈bn〉β ends in
1. Then bn − 1 = bn−1 is SL, and b′n − 1 ∈ (0, 1). Then b′n ∈ (1, 2). Since b1 = 1
is LL, b′n ∈ [1, 2). From the fact that h′ = h for h ∈ {1, . . . , (a− 3)}, we deduce
4.1.

The proof of 4.2 is now straightforward. The only possibility for β-integers
such that their β-expansion ends in (a− 2) not prefixed by an element of M is
ΩLL(a− 2) = (a− 2, β − 1). ��

3.2 Some Cubic Pisot Units

Case 1. The Tribonacci number: β3 = β2 + β + 1
The substitution σβ allows only the following configurations (respectively

Voronoi cells): LM , LS, ML, SL and LL in uβ.

Proposition 5 In each of the following assertions (i) and (ii) are equivalent.
For n � 1

5.1 (i) bn is LM ; (ii) 〈bn〉β ends in 01, or n = 1 and 〈b1〉β = 1.
5.2 (i) bn is LS; (ii) 〈bn〉β ends in 011, or n = 3 and 〈b3〉β = 11.
5.3 (i) bn is ML; (ii) 〈bn〉β ends in 10(000)q, q ∈ N.
5.4 (i) bn is SL; (ii) 〈bn〉β ends in 100(000)q, q ∈ N.
5.5 (i) bn is LL; (ii) 〈bn〉β ends in 1000(000)q, q ∈ N.

Proof. Suppose that bn is ML. The word ML can be issued from the substitution
of three configurations of letters. In the first configuration, ML is a factor of
LMLSLM , and bn = βbk, where bk is LM .
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bn bn+1 bn+2 bn+3

LM | LS | LM
↑ ↑ ↑

bk bk+1

L | M | L

Since by recurrence hypothesis, 〈bk〉β ends in 01, 〈bn〉β ends with 010. Conse-
quently the β-expansions of bn+1, bn+2 and bn+3, which are respectively LS, SL
and LM , end with 011, 100 and 101, respectively.

In the second configuration ML is a factor of LMLLM , and bn = βbk, where
bk is LS.

bn bn+1 bn+2

LM | L | LM
↑ ↑ ↑

bk bk+1

L | S | L

By recurrence hypothesis, 〈bk〉β ends in 011, then 〈bn〉β ends with 0110. Thus,
the β-expansions of bn+1, bn+2 which are respectively LL and LM end with 1000
and 1001, respectively. Since M is always follwed by L, bn+3 is ML, and ends
in 1010.

Finally, in the third configuration ML is a factor of LMLM , and bn = βbk,
where bk is LL.

bn bn+1

LM | LM
↑ ↑

bk

L | L

By recurrence hypothesis, 〈bk〉β ends in 1000(000)q, q ∈ N, then 〈bn〉β ends with
10(000)q+1. Then the β-expansions of bn+1 and bn+2, which are respectively LM
and ML, end with 10(000)q001 and 10(000)q010, respectively.

Let now bn be SL, which appears as a factor of LSLM . Then bn = βbk,
where bk is ML.

bn bn+1

LS | LM
↑ ↑

bk

M | L

Since by recurrence hypothesis 〈bk〉β ends with 10(000)q, then 〈bn〉β ends with
100(000)q, and consequently, the β-expansions of bn+1 and bn+2, which are LM
and ML, respectively, end in 001 and 010, respectively.
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Eventually, let bn be LL, which appears as a factor of LLM . Then bn = βbk,
with bk SL.

bn bn+1

L | LM
↑ ↑

bk

S | L

By recurrence hypothesis 〈bk〉β ends in 100(000)q, then 〈bn〉β ends with
1000(000)q, and consequently, the β-expansions of bn+1 and bn+2, which are
LM and ML respectively, end in 001 and 010. Cases LM and LS are treated
above. ��

Let α be one of the complex roots of X3 − X2 − X − 1. On Figure 3 we
display the Rauzy fractal, i.e. the set Ω = (Z+

β )′, which is the closure of the set
{
∑

0�i�N xiα
i | there is no factor 111 in xN · · ·x0, N � 0}, and its partition

according to Voronoi cells of β-integers. Recall that, by definition, b0 = 0 is LL.
The origin 0, although it belongs to ΩLL, lies at the intersection of ΩLL with
ΩML and ΩSL.

Fig. 3. The Rauzy fractal, obtained when β is the Tribonacci number

Usually the Rauzy fractal is divided into three basic tiles T0, T01 and T011,
see [11, 16] or [15, Chapter 7]. Obviously our partition of the Rauzy fractal is a
refinement of the classical division, with T0 = ΩSL ∪ ΩML ∪ ΩLL, T01 = ΩLM ,
and T011 = ΩLS .

Thus the domain exchange ρ defined on the Rauzy fractal (see Theorem 7.4.4
in [15]) is just the following:

T0 = ΩSL ∪ΩML ∪ΩLL
ρ�→ ΩLS ∪ΩLM ∪ΩLL

T01 = ΩLM
ρ�→ ΩML

T011 = ΩLS
ρ�→ ΩSL.

From Proposition 5 one obtains the following result.



222 Avi Elkharrat and Christiane Frougny

Proposition 6 In the Rauzy fractal we have the following relations

(i) ΩML = ΩLM + α−1 + α−2

(ii) ΩSL = ΩLS + α−1

(iii) ΩLL = αΩLS + 1 = α2ΩLM + α + 1.

Proof (i). Let b′n be in ΩML. Then the β-expansion of bn is of the form w10(000)q.
Using that the word 10(000)q has the same value in base β (or α) as the word
(011)q01.11, we obtain that b′n belongs to ΩLM + α−1 + α−2.

Conversely, let b′p be in ΩLM . Then the β-expansion of bp is of the form v01.
The word v01.11 has same value as v10. If v10 is already in normal form, it is
an element of ΩML. If not, it is of the form u(011)k10, with k maximal, and its
normal form is u10(000)k, thus the result follows.

(ii) The proof is similar.
(iii) It follows easily from (i) and (ii), and from the fact that ΩLL = αΩSL =

α2ΩML. ��

Case 2. Symmetry of order 7: β3 = 2β2 + β − 1
The substitution σβ allows only the following configurations (respectively

Voronoi cells): LL, LS, SL, SM and ML.
Let M1 = 2(01)∗ and M2 = 2(01)∗0. The set M = M1 ∪M2 is the set of

maximal words of each length in the radix order, i.e., the set of prefixes of dβ(1).

Proposition 7 In each of the following assertions (i) and (ii) are equivalent.
For n � 1
6.1 (i) bn is LL; (ii) 〈bn〉β ends in w1 where w /∈ M2.
6.2 (i) bn is LS; (ii) 〈bn〉β ends in a word w ∈M1.
6.3 (i) bn is SL; (ii) 〈bn〉β ends in w0 where w /∈ M1 or by (0)2q+1, q ∈ N∗.
6.4 (i) bn is SM ; (ii) 〈bn〉β ends in a word w ∈M2.
6.5 (i) bn is ML; (ii) 〈bn〉β ends in (0)2q+2, q ∈ N.

Proof. It is similar to the proof of Proposition 5. ��
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Abstract. In this paper we describe a factorial language, denoted by
L(S, k, r), that contains all words that occur in a string S up to k mis-
matches every r symbols. Then we give some combinatorial properties of
a parameter, called repetition index and denoted by R(S, k, r), defined
as the smallest integer h ≥ 1 such that all strings of this length occur
at most in a unique position of the text S up to k mismatches every r
symbols. We prove that R(S, k, r) is a non-increasing function of r and a
non-decreasing function of k and that the equation r = R(S, k, r) admits
a unique solution.

The repetition index plays an important role in the construction of an
indexing data structure based on a trie that represents the set of all
factors of L(S, k, r) having length equal to R(S, k, r). For each word
x ∈ L(S, k, r) this data structure allows us to find the list occ(x) of all
occurrences of the word x in a text S up to k mismatches every r symbols
in time proportional to |x| + |occ(x)|.
Keywords: Combinatorics on words, formal languages, approximate
string matching, indexing.

1 Introduction

In this paper we study some combinatorial properties of languages that represent
words that occur in a text S with k mismatches every r symbols, k, r non negative
integers. More precisely, given a text S = a1a2 . . . an and two non negative
integers k and r, k ≤ r, we say that a string u kr-occurs with mismatches in S
at position l, 1 ≤ l ≤ n, if it occurs in S at position l with at most k mismatches
in any window of size r. We call such a string u a kr-occurrence in S at position
l. The combinatorial study of the language, denoted by L(S, k, r), of all the kr-
occurrences in a text S is important from several points of view. For instance
it helps in the design and in the analysis of algorithms and data structures for
approximate string matching, that have, in turn, plenty of applications such as
the text searching in presence of typing and spelling errors and the finding of
DNA subsequences after possible evolutionary mutations. Indeed, in this paper
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we also describe an index of kr-occurrences in a text. Different definitions of
approximate pattern matching can be found in [10], [11], [12].

The combinatorial study of the language L(S, k, r) that we describe in this
paper mainly focus on a parameter, called repetition index and denoted by
R(S, k, r), introduced for the first time in [4]. It is defined as the smallest integer
h ≥ 1 such that all strings of this length occur at most in a unique position of
the text S up to k mismatches every r symbols.

Notions similar to the repetition index have been deeply studied. It belongs to
folklore the fact that the size of the longest repeated factor in a string S is equal
to the maximal string-depth (or height) of internal nodes in the suffix-tree of S. It
represents a special case of the repetition index when the number k of mismatches
is zero. In [1, 13] it is defined the generalized height H(S,D) as the largest h for
which there exist 1 ≤ i < j ≤ |S|−k+1 such that d(S(i, i+h−1), S(j, j+h−1)) ≤
hD. The real number D is the proportion of mismatches. In the same papers an
average evaluation of this notion is given.

In [4] an evaluation of the repetition index is given. More precisely, if S is an
infinite sequence generated by a memoryless source and Sn the sequences of S
prefixes, n being the length of Sn, the repetition index R(Sn, k, r) is logarithmi-
cally upper bounded by the size of Sn almost surely.

In this paper we prove several combinatorial properties of R(S, k, r). It is a
non-increasing function of the window size r, a non-decreasing function of the
number k of errors and, under the hypothesis that k is fixed and r ≥ R(S, k, r),
it gets constant. Moreover, there exists a unique solution of the equation r =
R(S, k, r).

As an application, we define an approximate indexing data structure in which
the repetition index plays an important role.

Literature on approximate indexing involves many results. Among the most
recent ones, in [2] Cole, Gottlieb and Lewenstein propose a data structure
for Hamming distance that answer queries in time O( (log |S|)k·log log |S|

k! + |x| +
|occ(x)|), where x is the word we are looking for, occ(x) is the list of all its
occurrences, k is the maximal number of allowed mismatches and k ≤ log |S|.
In [7], Huynh, Hon, Lam and Sung describe two indexing data structures that
take O(|S| · log |S|) bits and O(|S|) bits, respectively. In the special case k =
1, the query time is O(|x| · log |S| + |occ(x)|) in the first data structure and
O(|x| · log2 |S| + |occ(x)| · log |S|), in the second one. In the more general case
k > 1, the query time is O(|x|k · log |S| + |occ(x)|) in the first data structure
and O(|x|k · log2 |S| + |occ(x)| · log |S|) in the second one. In [4] another index-
ing data structure is defined in the special case r = R(S, k, r). For each word
x ∈ L(S, k, r) this data structure finds the list of all kr-occurrences of x in S in
time proportional to |x| + |occ(x)|, but under an additional hypothesis on the
distribution of the repetition index. The average size of the data structure for k
fixed is O(|S| · logk+1 |S|).

In this paper we give an alternative method to build up an indexing data
structure that is simpler than the one given in [4], has the same average size
and has the same optimal query time without any additional hypothesis. More
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precisely, we define a new indexing data structure based on a trie representing
all factors of L(S, k, r) of length equal to R(S, k, r). For each word x this data
structure allows us to find the list of all kr-occurrences of x in S in time propor-
tional to |x|+ |occ(x)| but, differently from the search in [4], without additional
hypothesis.

The remainder of this paper is organized as follows. In the second section we
give some basic definitions we will use in the following. In the third and fourth
sections we define the language L(S, k, r) of the kr-occurrences of a text S and the
repetition index R(S, k, r) and we prove some combinatorial properties of them.
Finally, last section is devoted to the construction of the trie based indexing
data structure and to the algorithm for searching the kr-occurrences of a word
in a text represented through this data structure.

2 Basic Definitions

Let Σ be a finite set of symbols, usually called the alphabet. We denote by Σ∗

the set of words over Σ and by ε the empty word. For a word w, we denote by
|w| the length of w.

A word u ∈ Σ∗ is a factor (or substring)(prefix, suffix resp.) of a word w if
there exist words x, y ∈ Σ∗ such that w = xuy (w = uy, w = xu resp.). The
factor (prefix, suffix, resp.) is proper if xy �= ε (y �= ε, x �= ε, resp.). We denote
the set of factors (prefixes, suffixes, resp.) of a language L by Fact(L) (resp.
Pref(L), resp. Suff(L)).

We denote an occurrence of a factor in a string w = a1a2 . . . an at position
i, 1 ≤ i ≤ n, by w(i, j) = ai . . . aj , for some j such that i ≤ j ≤ n. The length of
a substring w(i, j) is the number of the letters that compose it, i.e. j − i + 1.
Given a set I of words, we also denote by ‖I‖ the sum of the lengths of all words
in the set I.

A factorial language (cf. [8]) L ⊆ Σ∗ is a language that contains all factors
of its words, i.e. ∀ u, v ∈ Σ∗, uv ∈ L ⇒ u, v ∈ L. The complement language
Lc = Σ∗ \ L is a (two-sided) ideal of Σ∗. Let us denote by MF (L) the base of
this ideal. We have that Lc = Σ∗MF (L)Σ∗. The set MF (L) is called the set
of minimal forbidden words for L. By definition, a word v ∈ Σ∗ is forbidden for
the factorial language L if v /∈ L, which is equivalent to say that v occurs in no
word of L. In addition, v is minimal if it has no proper factor that is forbidden.

Let w be a finite word on the alphabet Σ. It is possible to define the set
of minimal forbidden factors of a single word w as the set of minimal forbidden
factors of the language Fact(w) and we denote it simply by MF (w). For example,
if we consider the word w = atgcta over the alphabet Σ = {a, c, g, t}, One has
that MF (w) = {aa, ac, ag, ata, ca, cc, cg, ctg, ga, gg, gt, tat, tc, tt}.

In order to introduce the problem of approximate string matching, we need
a notion of distance between words.

Let us consider the function d : Σ∗ ×Σ∗ → R defined between two strings x
and y on the alphabet Σ as the minimal cost of a sequence of operations that
transform x into y (and ∞ if no such sequence exists). The cost of a sequence of
operations is the sum of the costs of the individual operations. The operations
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are a finite set of rules of the form (x, y), where x and y are different strings.
Their cost is δ(x, y) = t, t being a real number.
In most applications the possible operations are:

Insertion i.e. inserting the letter a, with cost δ(ε, a);
Deletion i.e. deleting the letter a, with cost δ(a, ε);
Substitution or Replacement i.e. substituting a by b for a �= b, with cost

δ(a, b);
Transposition i.e. swap the adjacent letters a and b for a �= b, with cost

δ(ab, ba).
There are different distances between words that are defined starting from above
operations and that allow to transform a word x into another word y. The most
commonly used distance functions are the following:

– Levenshtein or edit distance [Levenshtein, 1965]: it allows insertions, dele-
tions and substitutions. In the simplified definition all the operations cost
1. This can be rephrased as “the minimal number of insertions, deletions
and substitutions to make two strings equal”. In the literature the search
problem in many cases is called “string matching with k differences”. It also
holds 0 ≤ d(x, y) ≤ max {|x|, |y|};

– Hamming distance [Sankoff and Kruskal, 1983]: it allows only substitutions,
which cost 1 in the simplified definition. In the literature the search problem
in many cases is called “string matching with k mismatches”. It is finite
whenever |x| = |y|. In this case it holds 0 ≤ d(x, y) ≤ |x|.
In this paper we take in consideration the Hamming distance d in the sim-

plified definition. In this case, given two strings x and y having the same length,
d(x, y) is the minimal number of character substitutions that transform x into
y. For example, if we consider the strings x, y ∈ Σ∗, x = acgactccga and
y = ccgacttcgt, one has that the Hamming distance between the stings x and y
is d(x, y) = 3.

3 The Language L(S, k, r)

In the field of approximate string matching, typical approaches for finding a
string in a text consist in considering a percentage D of errors, or fixing the
number k of them. In the classical notion of approximate string matching we
introduce a new parameter r and allow at most k errors for any factor of length
r of the text. We have the following definition.

Definition 1. Let S be a string over the alphabet Σ, and let k, r be non negative
integers such that k ≤ r. A string u occurs in S at position l up to k errors in a
window of size r or, simply, kr-occurs in S at position l, if one of the following
two conditions holds:

– if |u| < r then d(u, S(l, l + |u| − 1)) ≤ k;
– if |u| ≥ r then ∀ i, 1 ≤ i ≤ |u| − r + 1, d(u(i, i + r− 1), S(l + i− 1, l + i+

r − 2)) ≤ k.

A string u satisfying the above property is a kr-occurrence of S.
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From now on we will suppose that the text is non-empty, r ≥ 2 and 0 ≤ k ≤ r,
otherwise the above definition would have no meaning.

Remark 1. If we wish to have no window at all, we can set the size of the window
r to be equal to |S|. Indeed, when the size r of the window is equal to the size of
the text S, then the problem of finding all kr-occurrences of a string u in the text
is equivalent to the k-mismatch problem, that consists in finding all occurrences
of the string u in S with at most k errors (cf. [6]).

We denote by L(S, k, r) the set of words u that kr-occur in S at position l, for
some l, 1 ≤ l ≤ |S| − |u|+ 1. Notice that L(S, k, r) is a factorial language, i.e. if
u ∈ L(S, k, r) then each factor (or substring) of u belongs to L(S, k, r). Clearly
if u is a factor of S then L(u, k, r) ⊆ L(S, k, r).

Example 1. Let S = abaa be a string on the alphabet Σ = {a, b}. The set
L(S, 1, 2) of words that kr-occur in S, when k = 1 and r = 2, is L(S, 1, 2) =
{ a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, aaaa, aaab, abaa, abab, abba,
bbaa, bbab,
bbba}.

Notice that words aab, aaab, bbab, bbba occur with one error every r = 2
symbols, but with two errors in the whole word. Hence, they belong to L(S, 1, 2),
but not to L(S, 1, 4).

Definition 2. Let u be a string over the alphabet Σ. The neighborhood of u
(with respect to k, r) is the set V (u, k, r) = L(u, k, r) ∩Σ|u|.

Remark 2. If a word u has length m then it is easy to see that the maximal
distance between a word v ∈ V (u, k, r) and u is bounded by k�m

r �. More pre-
cisely, if u has length m = rq + p, with q = "m

r # and p < r, then the maximal
distance between a word v ∈ V (u, k, r) and u is kq + min{k, p}. Therefore, a
simple combinatorial argument shows that the number of elements in the set

V (u, k, r) is at most
∑kq+min{k,p}

i=0

(
m
i

)
(|Σ| − 1)i.

The elements of V (S, k, r) are the strings u such that |u| = |S| and the kr-
occurrences of the factors of length r starting at the same position i (1 ≤ i ≤
|S| − r + 1) in S and u respectively have distance less than or equal to k, that
is ∀ i, 1 ≤ i ≤ |S| − r + 1, d(S(i, i + r − 1), u(i, i + r − 1)) ≤ k.
The following equality holds between the language L(S, k, r) and the set of all
factors of V (S, k, r).

Proposition 1. L(S, k, r) = Fact(V (S, k, r)).

Proof. The inclusion Fact(V (S, k, r)) ⊆ L(S, k, r) follows from the definition of
V (S, k, r) and the factoriality of L(S, k, r).

Conversely, if u belongs to L(S, k, r) then u kr-occurs in S at some position
l, 1 ≤ l ≤ |S| − |u| + 1, and then, by definition, u is such that one of the
following two conditions holds. If |u| < r, d(u, S(l, l + |u| − 1)) ≤ k; if |u| ≥ r,



Languages with Mismatches and an Application to Approximate Indexing 229

∀ i, 1 ≤ i ≤ |u| − r + 1, d(u(i, i + r − 1), S(l + i− 1, l + i + r − 2)) ≤ k. In both
cases let us factorize S in the following way: S = h1S(l, l + |u| − 1)h2 and hence
h1uh2 ∈ V (S, k, r). �
Let I be a set of factors of the string S, i.e. I ⊆ Fact(S). We denote by Ik,r the
union of the neighborhoods of the elements of I, i.e.: Ik,r =

⋃
u∈I V (u, k, r).

In next proposition we estimate the size ‖Ik,r‖ of Ik,r when I is the set of
factors of S of length r.

Proposition 2. Let S be an infinite sequence over a fixed alphabet Σ, Sn the
prefix of S of length n, k the number of errors allowed in a window of size r
and I the set of all factors of Sn having length r. If k is fixed, and r →∞ when
n→∞, the size of the set Ik,r is ‖Ik,r‖ = O(n · rk+1).

Proof. By Remark 2 the number of elements in the set V (u, k, r) when |u| = r is

at most
∑k

i=0

(
r
i

)
(|Σ|−1)i. Hence, the total length of all words in V (u, k, r) is

O(r ·
∑k

i=0

(
r
i

)
(Σ − 1)i) = O(rk+1). Since the number of factors of Sn having

size r is obviously bounded by n, the thesis follows.

4 The Repetition Index R(S, k, r)

In this section we introduce a parameter, called repetition index and denoted
by R(S, k, r), that plays an important role in the construction of an indexing
data structure based on a trie that represents the set of all factors of a string S
having length R(S, k, r).

Definition 3. The repetition index of S, denoted by R(S, k, r), is the smallest
integer h such that all strings of this length kr-occur at most in a unique position
of the text S, i.e.

R(S, k, r) = min{h ≥ 1 | ∀ i, j, 1 ≤ i, j ≤ |S| − h + 1,
V (S(i, i + h− 1), k, r) ∩ V (S(j, j + h− 1), k, r) �= ∅ ⇒ i = j}.

Remark 3. R(S, k, r) is well defined because the integer h = |S| is an element of
the set above described.

Lemma 1. If k
r ≥

1
2 then R(S, k, r) = |S|.

Proof. For any length R < |S| pick two factors of S, S(l1, l1 + R − 1) and
S(l2, l2 + R− 1) with l1 �= l2. Define v = a1 . . . aR, ai letters, such that in every
window of v of size r, half of the letters are letters of S(l1, l1 + R − 1) and
the remaining are of S(l2, l2 + R − 1). More formally, we let ai = Sl1+i−1 if (i
(mod r)) < r

2 and aiSl2+i−1 otherwise.
Under the hypothesis that k

r ≥ 1
2 , it follows that the Hamming distance

between v and S(l1, l1+R−1) and between v and S(l2, l2+R−1) is smaller than
or equal to k in every window of size r. Therefore for any R < |S|, v = a1 . . . aR

kr-occurs at least twice in S. Hence R(S, k, r) = |S|. �
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Example 2. Let us consider the string S = abcdefghijklmnoabzdezghzjkzmnz.
We want to determine the repetition index R(S, k, r), with k = 1, by considering
different sizes of the window in which errors are allowed.
– If r = 2, then k

r = 1
2 and by Lemma 1 the repetition index R(S, 1, 2) = |S| =

30. A word w of length R(S, 1, 2)− 1 = 29 that appears in position 1 and in
position 2 up to 1 error every 2 symbols is wacceeggiikkmmoobbddzzhhjjz
znn.

– If 3 ≤ r ≤ 6 then R(S, 1, r) = |S|
2 + 1 = 16 and a word w of length

R(S, 1, r) − 1 = |S|
2 = 15 that appears twice up to 1 error every r sym-

bols is wabcdezghijkzmno.
– If r ≥ 7 then R(S, 1, r) = 9 and a word w of length R(S, 1, r) − 1 = 8 that

appears twice up to 1 error every r symbols is w = abzdefgh.

The following evaluation of the repetition index, that we need in the following
to evaluate the size of an indexing data structure, is given in [5].

Theorem 1. Let S be an infinite sequence generated by a memoryless source,
let Sn be the prefix of S of length n and p be the probability that the letters in
two distinct positions are equals.

1. If k and r are fixed, almost surely
• lim supn∈N

R(Sn,k,r)
log(n) ≤ 2

H(D,p) , when D = 2k
r < 1− p,

• lim infn∈N
R(Sn,k,r)

log(n) ≥ 2
H(D,p) , when D = k

r < 1− p,
where H(D, p) = (1−D) log 1−D

p +D log D
1−p is the classical entropy function.

2. If k is fixed and r is a function r(n) of n such that limn→∞ r(n) = +∞
almost surely limn→∞

R(Sn,k,r(n))
log n = 2

H(0,p) .

In [4] it is described an algorithm for finding the repetition index R(S, k, r)
of a text S up to mismatches having worst case running time proportional to the
size ‖Ik,r‖ of the set Ik,r times log2 R(S, k, r), where I is the set of all factors of
S of length 2R(S, k, r), i.e. O(‖Ik,r‖ · log2 R(S, k, r)).

4.1 Some Combinatorial Properties of the Repetition Index

In this section we present some combinatorial properties of the repetition index.
First of all, we prove that the repetition index R(S, k, r) is a non-increasing

function of parameter r and a non-decreasing function of k.

Lemma 2. If k and S are fixed and r1 ≤ r2 then R(S, k, r1) ≥ R(S, k, r2).

Proof. If a word v of length |v| appears in two different positions in S up to k
errors every r2 symbols then it also appears in the same positions up to k errors
every r1 symbols. Since R(S, k, r2)− 1 is the maximal length of such words then
R(S, k, r1)− 1 ≥ R(S, k, r2)− 1. �

Lemma 3. If r and S are fixed and k1 ≤ k2 then R(S, k1, r) ≤ R(S, k2, r).
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We omit the proof of previous statement because it is similar to the proof of
Lemma 2 and it can be handled symmetrically.

The following lemma shows that under the hypothesis that k is fixed and
r ≥ R(S, k, r), the repetition index gets constant.

Lemma 4. If k and S are fixed, r1 ≤ r2 and r1 ≥ R(S, k, r1) then R(S, k, r1) =
R(S, k, r2).

Proof. Since by Lemma 2 R(S, k, r1) ≥ R(S, k, r2), one has that r2 ≥ r1 ≥
R(S, k, r1) ≥ R(S, k, r2).

By definition, any word v of length equal to R(S, k, r2) appears in S at most
in a unique position up to k errors in a window of size r2. Since r2 ≥ R(S, k, r2)
every word v of length equal to R(S, k, r2) appears in S at most in a unique
position up to k errors. As r1 ≥ R(S, k, r2) we can say that v appears at most
in a unique position in S up to k errors every r1 symbols. This fact implies that
R(S, k, r2) ≥ R(S, k, r1) and the lemma is proved. �
Lemma 5. If k and S are fixed and r > R(S, k, r) then r − 1 ≥ R(S, k, r − 1).

Proof. We claim that R(S, k, r) = R(S, k, r − 1). By Lemma 2, we have that
R(S, k, r) ≤ R(S, k, r − 1), as r > r − 1. By definition, any word v of length
equal to R(S, k, r) appears in S at most in a unique position up to k errors in a
window of size r. Since r > R(S, k, r) every word v of length equal to R(S, k, r)
appears in S at most in a unique position up to k errors. As r − 1 ≥ R(S, k, r)
we can say that v appears at most in a unique position in S up to k errors every
r− 1 symbols. This fact implies that R(S, k, r− 1) ≤ R(S, k, r), and the claim is
proved. Since r > R(S, k, r) then r − 1 ≥ R(S, k, r)R(S, k, r − 1) and the thesis
follows. �
By using Lemma 2 and Lemma 5 we can prove the following theorem.

Theorem 2. If k and S are fixed then there exists only one solution to the
equation r = R(S, k, r).

Proof. Let us first prove that there exists at least one solution to the equation
r = R(S, k, r). The idea of the proof is to start with a large value of r, so that
r ≥ R(S, k, r) and then to decrease r by one unit until the equality is reached.

Let us start with r = |S|. Since no repeated factor of S can have length greater
than |S|−1, we have that r ≥ R(S, k, r). If r = R(S, k, r) the statement is trivial.
So we only have to consider the case when r > R(S, k, r). If r > R(S, k, r), by
Lemma 5 we have that r − 1 ≥ R(S, k, r− 1). By iterating this argument, there
will exist a value h < r such that r−hR(S, k, r−h), and the existence is proved.

The uniqueness follows by Lemma 2, since the repetition index R(S, k, r) is
a non-increasing monotonic function of the window size r. �
Proposition 3. Let S be an infinite sequence over a fixed alphabet, Sn the prefix
of S of length n, k the number of errors allowed in a window of size r and I
the set of all factors of Sn having length r. If k is fixed, and rn is a function
of n that for any n ≥ 1 satisfies the equations rn = R(Sn, k, rn), we have that
rn →∞ when n→∞.
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Proof. If n1 > n2, since Sn2 is a prefix of Sn1 , then rn1 = R(Sn1 , k, rn1) ≥ rn2 =
R(Sn2 , k, rn2). Therefore the sequence rn is monotone non decreasing. Suppose,
by contradiction, that it does not converge to∞, i.e., that there exists a constant
r̂ such that, for any n, rn ≤ r̂. Since the alphabet is fixed, the number of words
of length r̂ is also finite. Let N̂ be this number. If n > N̂ + r̂ then the number of
positions of Sn that represent an occurrence of a factor of Sn of length r̂ is greater
than N̂ . By the pigeon-hole principle at least two must be equal, contradicting
the fact that rn = R(Sn, k, rn) ≤ r̂.

5 A Trie Based Approach
for Approximate Indexing Data Structures

In this section, we give an algorithm for building an indexing data structure
using a trie that represents the set of all possible strings having length R(S, k, r)
that kr-occur in S.

First of all we find the repetition index R(S, k, r) of the string S by using an
algorithm described in [4] called Find-Repetition-Index, and then we keep
the set I of all factors of S having length R(S, k, r).

In the second step, given the set I of factors u of S of length R(S, k, r),
we build the set Ik,r that is the union of neighborhoods of elements of I, i.e.
Ik,r =

⋃
u∈I V (u, k, r). To do this we use a variation of the routine for generating

the frequentable neighbours of factors of the text having a fixed length ([3, Section
7.6]) and its running time is proportional to ‖Ik,r‖, where with the notation
‖Ik,r‖ we denote the sum of the lengths of all strings in the set Ik,r .

The third step is to build the trie T (I, k, r) of the set Ik,r. Each leaf of this
trie represents a kr-occurrence of the string S having length R(S, k, r). We add to
any leaf of the trie T (I, k, r) an integer such that for any leaf i, the concatenation
of the edge-labels on the path from the root to leaf i is the kr-occurrence of S
starting at position i. We note that, given a factor u of S, this number is the
same for every word v of the neighborhood V (u, k, r) of u.

For any leaf i we also add a position j of an array, denoted by Pos, such that
Pos[j] = i is the starting position of the kr-occurrence of S represented by the
j-th leaf in the lexicographic order, supposed a fixed order among the letters. To
build array Pos and to add these positions on the leaves it is sufficient to make
a linear time visit of the trie in the lexicographic order.

During this visit we can also associate to any internal node x of the trie
T (S, k, r) two integers jr and jl such that Pos[jr] = r and Pos[jl] = l, where r
and l are the first and the last leaf in the lexicographic order of the subtrie of
T (I, k, r) having root x.

Next proposition gives an evaluation of the size of the trie T (I, k, r).

Proposition 4. Let S be an infinite sequence generated by a memoryless source,
Sn the sequences of prefixes of S of length n and I the set of all factors of Sn

having length R(Sn, k, r).
If k is fixed and r = R(Sn, k, r), there exists a fixed constant C, that does

not depend on the string S, and an integer n0 (that can depend on the string
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S) such that for every n > n0 the size of the trie T (I, k, r) is upper bounded by
C · n · logk+1(n) almost surely.

Proof. The size of the trie T (I, k, r) is bounded by ‖Ik,r‖, where with the nota-
tion ‖Ik,r‖ we denote the sum of the lengths of all strings in the set Ik,r. Under
the hypothesis that k is fixed and r = R(Sn, k, r), by Proposition 3 and Propo-
sition 2 the size of Ik,r is O(n ·R(Sn, k, r)k+1). Under the same hypothesis, from
Theorem 1 we can deduce that almost surely limn→∞

R(Sn,k,r)
log n = 2

H(0,p) , where
p is the probability that the letters in two distinct positions are equals. Hence,
almost surely ∀ ε > 0, ∃n0 such that ∀n > n0

∣∣∣R(Sn,k,r)
log(n) − 2

H(0,p)

∣∣∣ < ε. Then
there exists a fixed constant C′, that does not depend on S but only on the en-
tropy H(0, p) of the source, such that almost surely R(Sn, k, r(n)) ≤ C′ log(n),
and the thesis follows. �

5.1 Searching in the Indexing Data Structure

Once T (I, k, r) is equipped in this way, it can be used as indexing data structure
for solving the problem of finding all kr-occurrences of a string x in the text S.

By using a Read-Trie Function, that is a slight variation of Desc-Lente
([3, Section 5.1]), we “read”, as long as possible, the string x in the trie T (I, k, r)
and we output the last visited node q.

Now we can distinguish the following three cases.
i) |x| = R(S, k, r). In this case the length of the string x is equal to the repe-

tition index R(S, k, r). Thus, the list of all kr-occurrences of x has at most
one element. If the end of x is reached, the output is exactly the number
associated with the leaf i that represents the unique kr-occurrence of x in S.

ii) |x| > R(S, k, r). In this case the length of the string x is greater than the
repetition index R(S, k, r). Thus, the list of all kr-occurrences of x has at
most one element, that could be a false positive for the original problem (i.e.
the pattern x has more than k errors in every window of size r). So, when
we reach the leaf that represents the prefix of x of length R(S, k, r) in the
trie T (I, k, r), we obtain a unique position i. By using a Check-Errors
Function we have only to check if x kr-occurs in S in position i. In case
of positive answer, that is if the output of the Check-Errors Function is
true, the algorithm returns i. Check-Errors Function runs in time O(|x|).

iii) |x| < R(S, k, r). In this case the length of the string x is smaller than the
repetition index. Therefore the list of all kr-occurrences of the string x can
have more than one element. Hence, if the end of x is reached, we consider the
indexes jr and js in the array Pos of the first and last leaf in the lexicographic
order of the subtrie of T (I, k, r) having root x. Let us consider the array Pos
from index jr to index jl. This sub-array contains all the starting positions of
the kr-occurrences of x in S represented by the leaves of the subtrie having
root x. We note that these positions can be repeated. Indeed, suppose that
x occurs without mismatches in position l. Then all words that have x as a
prefix, have length R(S, k, r) and kr-occur in position l, belong to the subtrie
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of T (I, k, r) having root x. The number h of these words cannot be bounded
as R(S, k, r)− |x| is unbounded too. Therefore, position l appears at least h
times in the array Pos between jr and js. But we want to add the number
l to the list occ(x) just once, and, moreover we want to do this in constant
time in order to achieve the optimal output time.
To solve the problem of finding the different positions occ(x) of all kr-
occurrences of x in S in time O(|output|), where |output| is the size of the
list occ(x) of all different positions of all kr-occurrences of x in S, we use
the solution of the Colored range query problem presented in [9]. The state-
ment of this problem is the following. Given an array A[1..n] of colors to
be preprocessed, online query consists of an interval [r, l], and the goal is to
return the set of distinct colors that appears in A[r..l]. This function, called
Colored-Range-Query, has as input the sub-array Pos[jr, jl] and returns
the list of different positions occ(x) of all kr-occurrences of x in S, in time
proportional to |occ(x)|. The description of this function is given in [9].

Before giving the formal description of this algorithm, we state the following
proposition on its searching time which proof is straightforward.

Proposition 5. The overall running time of Search-in-Indexing-Struc-
ture Algorithm is proportional to |x|+ |occ(x)|.

Search-in-Indexing-Structure(T (I, k, r),x,S)
1. q ← Read-Trie(x);
2. if q is a leaf and |x| = R(S, k, r)
3. then return i
4. else if q is a leaf and |x| > R(S, k, r)
5. then if Check-Errors(x,i,S,k,r)
6. then return i
7. else return (“x is a false positive”)
8. else occ(x) ← Colored-Range-Query(Pos[jr, jl]);
9. return occ(x).

Analogously as proved in [4], we can use the data structure built for r =
R(S, k, r) to search for all occurrences of any word x up to k mismatches without
window (or equivalently for r = |S|), i.e., to settle the k-mismatch problem, as
noticed in Remark 1. Indeed, it is sufficient to modify previous algorithm by
using Check-Errors(x,i,S,k,|S|) instead of Check-Errors(x,i,S,k,r).

This fact, together with Proposition 4 and Proposition 5, gives the following
result.

Theorem 3. The k-mismatch problem on text S over a fixed alphabet can be
settled by a data structure having average size O(|S| · logk+1 |S|) that answers
queries in time O(|x| + |occ(x)|) for any query word x.
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Abstract. Substitutions are powerful tools to study combinatorial prop-
erties of sequences. There exist strong characterizations through sub-
stitutions of the Sturmian sequences that are S-adic, substitutive or a
fixed-point of a substitution. In this paper, we define a bidimensional
version of Sturmian sequences and look for analogous characterizations.
We prove in particular that a bidimensional Sturmian sequence is always
S-adic and give sufficient conditions under which it is either substitutive
or a fixed-point of a substitution.

Introduction

Substitutions are non-erasing morphisms of the free monoid A∗ and generate
infinite sequences by iteration, replacing a letter of A by a word of A∗. One of
the most interesting property of sequences obtained in this way is that they are
algorithmically easily generated and have a strongly ordered structure, though
not restricted to the single periodic case.

The connection between substitutions and Sturmian sequences has been
widely studied. Roughly speaking, a Sturmian sequence Sα,ρ over the alpha-
bet {1, 2} encodes the way the line y = αx + ρ, α being irrational, crosses the
unit squares of the lattice Z2 (see Fig. 1 and for more details [9, 11]).

A Sturmian sequence is said substitutive, according to the terminology of [7],
if it is the image under a morphism of a fixed-point of a (nontrivial) substitution:

Sα,ρ = τ(S′) and S′ = σ(S′).

It is proved that such sequences are exactly the Sturmian sequences Sα,ρ with
a quadratic irrational slope α and an intercept ρ ∈ Q(α) (see [4]). If we fur-
thermore require that Sα,ρ be itself a fixed-point of a substitution, the previous
characterization becomes that α is a reduced quadratic irrational, with some
additional conditions on ρ (see e.g. [6, 14]). Let us recall (theorems of Lagrange
and Galois) that an irrational number is quadratic (resp. reduced quadratic) if
and only if its continued fraction expansion is ultimately periodic (resp. purely
periodic).
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Fig. 1. The Sturmian sequence · · · 112111211211 · · ·

In this paper, we would like to proceed by analogy in the bidimensional case
in order to obtain similar results. The first difficulty arises from the analogy
itself, which is not so obvious and with whom we deal in the first three sections.
Section 1 defines bidimensional Sturmian sequences, our analogue of Sturmian
sequences. Sections 2 and 3 give the definition of, respectively, the bidimensional
substitutions and the bidimensional continued fraction expansion we have cho-
sen, namely the generalized substitutions introduced in [3] and the Brun’s algo-
rithm (see [5]). It is indeed a choice since there is no canonical multidimensional
definition of a substitution or of a continued fraction expansion.

Our main results are given in Section 4. We here restricted ourselves to the
case of homogenous bidimensional Sturmian sequences, which correspond to the
Sturmian sequences Sα,ρ for which ρ = 0. Theorem 3 proves that such bidimen-
sional sequences are S-adic (see e.g. [13] for more details about S-adicity), while
Theorem 4 gives a partial characterization very similar to the unidimensional
case: a bidimensional Sturmian sequence is proved to be substitutive (resp. fixed-
point of a substitution) if its parameters – the equivalent of the slope α of a
Sturmian sequence – have an ultimately periodic (resp. a purely periodic) bidi-
mensional continued fraction expansion. Notice that a true characterization (for
example α is a cubic irrational if and only if the corresponding bidimensional se-
quence is substitutive) is probably very hard, since there is still no generalization
of the theorems of Lagrange and Galois which would say us which vectors have
purely periodic or ultimatily periodic expansions for some continued fraction
expansion (maybe not the one here used).

In Section 5, we examine the result of Section 4 from a more practical point of
view: can we use the substitutions to effectively generate bidimensional Sturmian
sequences? Though it does not completely solve the problem, Theorem 5 give a
non trivial result in the substitutive case. We end the paper giving in Section 6
future extensions of the work presented here.

1 Stepped Planes and Bidimensional Sequences

We here show how to associate to a plane a bidimensional sequence, by anal-
ogy to the one-dimensional case. This analogy also leads to define Sturmian
bidimensional sequences. One denotes (e1, e2, e3) the canonical basis of R3.
The face (x, i∗), for x ∈ Z3 and i ∈ {1, 2, 3} is defined by (see Fig. 2):

(x, i∗) = {x + rej + tek | 0 ≤ r, t ≤ 1 and i �= j �= k}.
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e1 e2

e3

e2
e1

e3
x

0 0 0 0

Fig. 2. From left to right: the faces (0, i∗), i = 1, 2, 3 and (x, 1∗) = x + (0, 1∗)

These faces generate the Z-module of the formal sums of weighted faces
G = {

∑
mx,i(x, i∗) | mx,i ∈ Z}, on which the lattice Z3 acts by translation:

y + mx,i(x, i∗) = mx,i(y + x, i∗).
One then uses faces to approximate planes of R3:

Definition 1. Let Pα,β be the homogenous plane of R3 defined by:

Pα,β = {x ∈ R3 | 〈x, t(1, α, β)〉 = 0}.

The stepped plane Sα,β associated to Pα,β is defined by:

Sα,β =
{
(x, i∗) | 〈x, t(1, α, β)〉 > 0 and 〈x− ei,

t(1, α, β)〉 ≤ 0
}
,

and a patch of Sα,β is a finite subset of the faces of Sα,β.

Notice that a patch of Sα,β belongs to the Z-module G, but is geometric, that
is, without multiple faces. According to the terminology introduced by Reveillès
in [12], the stepped plane corresponds to the notion of standard arithmetic plane
in discrete geometry.

We now recall from [1] (see also [2]) the way one can bijectively encode a
stepped plane by a bidimensional sequence over three letters. We first define a
bijective map from the faces of a stepped plane to its set of vertices:

Proposition 1 ([1]). Let v be the map from the faces of R3 to the vertices of
Z3 defined by (see Fig. 3, left):

v :
(x, 1∗)→ x
(x, 2∗)→ x + e1

(x, 3∗)→ x + e1 + e2.

Then v maps bijectively the faces of a stepped plane to its set of vertices.

We then define a bijective map from the vertices of a stepped plane to Z2:

Proposition 2 ([1]). Let Sα,β be a stepped plane. The orthogonal projection
π on the plane x + y + z = 0 is a bijection from the vertices of Sα,β to the
lattice Zπ(e1) + Zπ(e2). Thus the map π̃ defined by π̃(x) = (m,n) if and only if
π(x) = mπ(e1)+nπ(e2) is a bijection from the vertices of Sα,β to Z2. Moreover,
one has the explicit formulas:

π̃

⎛⎝p
q
r

⎞⎠ = (p− r, q − r),
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π̃−1(m,n) =

⎛⎝m
n
0

⎞⎠ +
(

1−
⌈

m + αn

1 + α + β

⌉)⎛⎝1
1
1

⎞⎠ .

And finally we give the encoding Uα,β of a stepped plane Sα,β (where Uα,β

(m,n) is the letter at position (m,n) in the bidimensional sequence Uα,β):

Proposition 3 ([1]). Let φ be mapping a stepped plane Sα,β to the bidimen-
sional sequence Uα,β over the alphabet {1, 2, 3} defined by:

(x, i∗) ∈ Sα,β ⇔ Uα,β(π̃ ◦ v(x, i∗)) = i,

Then φ is one-to-one from the set {Sα,β | 0 < α, β < 1} to the set of the bidimen-
sional sequences over {1, 2, 3} (see Fig. 3). Notice that not all the bidimensional
sequences over {1, 2, 3} correspond to a stepped plane.
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Fig. 3. From left to right: to each face corresponds a proper vertex (at its blacked
corner); type 1, 2 or 3 of a vertex depends on the type of its corresponding face; the
projection π̃ on the plane x + y + z = 0 maps the vertices to a 2-dimensional lattice;
we thus obtain a bidimensional sequence over {1, 2, 3}

One then defines Sturmian stepped planes and bidimensional Sturmian se-
quences by analogy with the unidimensional case:

Definition 2. A stepped plane Sα,β is a Sturmian stepped plane if 1, α and
β are linearly independent over Q. A bidimensional Sturmian sequence is the
image under φ of a Sturmian stepped plane.

Thus, φ is a bijection between the Sturmian stepped planes and the bidimen-
sional Sturmian sequences, for which we furthermore have explicit formulas.

2 Generalized Substitutions
We here define substitutions that act on stepped planes (or, equivalently, on the
bidimensional sequences corresponding to stepped planes). These substitutions
are the generalized substitutions, introduced in [3] (see also [11], Chap. 8).

Let us recall that the incidence matrix Mσ of a (classic) substitution σ gives
at position (i, j) the number of occurences of the letter i in the word σ(j).
Moreover, σ is said unimodular if detMσ = ±1. We are now in a position to
define the generalized substitutions:
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Definition 3. The generalized substitution associated to the unimodular sub-
stitution σ is the endomorphism Θσ of G defined by:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∀i ∈ A, Θσ(0, i∗) =
∑3

j=1

∑
s:σ(j)=p·i·s

(
M−1

σ (f(s)), j∗
)
,

∀x ∈ Z3, ∀i ∈ A, Θσ(x, i∗) = M−1
σ x + Θσ(0, i∗),

∀
∑

m(x,i)(x, i∗) ∈ G, Θσ

(∑
m(x,i)(x, i∗)

)
=
∑

m(x,i)Θσ(x, i∗),

where f(w) = (|w|1, |w|2, |w|3) and |w|i is the number of occurences of the letter
i in w.

Example 1. Let us consider the Rauzy substitution σ:

σ :
1 → 12
2 → 13
3 → 1

, Mσ =

⎛⎝1 1 1
1 0 0
0 1 0

⎞⎠ .

σ is unimodular, and one easily computes (see Fig. 4):

Θσ :
(e1, 1∗) �→ (e1, 1∗) + (e2, 2∗) + (e3, 3∗),
(e2, 2∗) �→ (e1 − e3, 1∗),
(e3, 3∗) �→ (e2 − e3, 2∗).

Fig. 4. The endomorphism Θσ for the Rauzy substitution: action on (ei, i
∗)

We now define an especially interesting type of substitution:

Definition 4. A substitution σ is of Pisot type if its incidence matrix Mσ has
eigenvalues μ1, μ2 and λ satisfying 0 < |μ1|, |μ2| < 1 < λ. The generalized
substitution Θσ is then also said of Pisot type.
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If σ is of Pisot type and if t(1, α, β) is the left eigenvector of Mσ for the
dominant eigenvalue λ (that is, tMσ

t(1, α, β) = λt(1, α, β)), the plane Pα,β is
called the contracting invariant plane of σ and satisfies:

Proposition 4. ∃μ, 0 < μ < 1, such that if x ∈ Pα,β, then Mσx ∈ Pα,β and
one has:

||Mσx|| ≤ μ||x||.

The action of Θσ, when of Pisot type, on the stepped plane Sα,β has some
nice properties proved in [3]. Indeed, Θσ maps each patch of Sα,β to a patch
of Sα,β , the unit cube U = {(ei, i

∗), i = 1, 2, 3} is always a patch of Sα,β

and the sequence (Θn
σ(U)) is strictly increasing for inclusion and thus generates

arbitrarily large patches of Sα,β (see Fig. 5).
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Fig. 5. Θn
σ (U) (top) and (φ◦Θσ ◦φ−1)n(U) (bottom) for the Rauzy substitution (which

is of Pisot type), n = 0, 1, 2, 3, 4. Notice that the action of Θσ is not so obvious

3 Bidimensional Continued Fractions

Contrary to the unidimensional case with the Euclid’s algorithm, there is no
canonical continued fraction expansion in the bidimensional case. We thus fix
here the expansion we will use further, that is the one produced by the modified
Jacobi-Perron algorithm, which is a two-point extension of Brun’s algorithm. Let
us recall this algorithm (see e.g. [5] for more details):

Definition 5. Let be X = [0, 1)× [0, 1) and T the map defined on X\(0, 0) by:

T (α, β) =

⎧⎪⎪⎨⎪⎪⎩
(

β
α , 1

α −
⌊

1
α

⌋)
if α ≥ β,

(
1
β −

⌊
1
β

⌋
, α

β ,
)

if α < β.
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For n ≥ 1 and if possible (that is, while αn−1 �= 0), one denotes:

(αn, βn) = T n(α, β),

and defines:

(an, εn) =

⎧⎪⎪⎨⎪⎪⎩
(⌊

1
αn−1

⌋
, 0
)

if αn−1 ≥ βn−1,(⌊
1

βn−1

⌋
, 1
)

if αn−1 < βn−1.

The sequence (an, εn) is called the continued fraction expansion of (α, β) (notice
that an ∈ N∗ and εn ∈ {0, 1}). This sequence is infinite iff 1, α and β are linearly
independent over Q

Let us give a matrix viewpoint on this algorithm. For a ∈ N∗, one defines the
substitutions:

σ(a,0) : 1→
a times︷ ︸︸ ︷
11 · · · 1 3

2→ 1
3→ 2

, σ(a,1) : 1 →
a times︷ ︸︸ ︷
11 · · ·1 2

2 → 3
3 → 1

,

whose incident matrices are:

A(a,0) =

⎛⎝a 1 0
0 0 1
1 0 0

⎞⎠ , A(a,1) =

⎛⎝a 0 1
1 0 0
0 1 0

⎞⎠ .

So that, with (α0, β0) = (α, β) and ηk = max(αk−1, βk−1), one has for n ≥ 1:

ηn
tA(an,εn)

⎛⎝ 1
αn

βn

⎞⎠ =

⎛⎝ 1
αn−1

βn−1

⎞⎠ .

We can give an expanded formulation of the previous equality:

Proposition 5. Let 1, α and β be linearly independent over Q and let (an, εn) be
the continued fraction expansion of (α, β). Then there exists a sequence (αn, βn)
of couples in [0, 1)2 such that:

∀n ∈ N,

⎛⎝ 1
α
β

⎞⎠ = (η1η2 · · · ηn)tA(a1,ε1)
tA(a2,ε2) · · · tA(an,εn)

⎛⎝ 1
αn

βn

⎞⎠ .

4 Substitutions and Bidimensional Sturmian Sequences

The previous sections have successively defined the bidimensional Sturmian se-
quences (or, equivalently, the Sturmian stepped planes), substitutions acting on
these sequences and a bidimensional continued fraction expansion. We thus are
now in a position to try to extend to the bidimensional case the results for
(unidimensional) Sturmian sequences given in the introduction.
Let us first define a generalized substitution which plays a specific role:
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Definition 6. The generalized substitution associated to the unimodular sub-
stitution of Pisot type σ(a,ε) introduced in Section 3 is denoted Θ(a,ε). Such a
generalized substitution is said of Brun type.

We then have the following fundamental theorem:

Theorem 1. Θ(an,εn) is a bijection from Sαn,βn onto Sαn−1,βn−1 .

We shall stress that there is no contradiction between Theorem 1 and the
results recalled at the end of Section 2, which would yield here that Θ(an,εn) is
a one-to-one map from the stepped plane associated to its contracting invariant
plane to itself. Indeed, neither Pαn,βn nor Pαn−1,βn−1 are invariant planes of
Θ(an,εn) (except if the expansion (an, εn) is purely periodic of period 1, in which
case all these planes are identical).
As we did in Proposition 5, we can give an expanded formulation of Theorem 1:

Theorem 2. Let Sα,β be a Sturmian stepped plane and (an, εn) be the continued
fraction expansion of (α, β). Then there exists a sequence (Sαn,βn) of Sturmian
stepped planes such that:

∀n ∈ N, Sα,β = Θ(a1,ε1) ◦Θ(a2,ε2) ◦ · · · ◦Θ(an,εn) (Sαn,βn) .

We thus obtain for Sα,β an equation – called expansion – which looks like the
classic S-adic expansion of a Sturmian sequence (see e.g. [13] for more details on
S-adicity), though the number of different substitutions of our expansion may
be unbounded. We will fix this last point thanks to the following proposition:

Proposition 6. Let us define the substitutions:

σ0 :
1→ 1
2→ 2
3→ 13

, γ0 :
1→ 3
2→ 1
3→ 2

, σ1 :
1→ 1
2→ 12
3→ 3

, γ1 :
1 → 2
2 → 3
3 → 1

.

These substitutions are unimodular and verify:

∀(a, ε) ∈ N× {0, 1}, σ(a,ε) = σa
ε ◦ γε.

An induction easily proves Proposition 6. Let Σε and Γε be the generalized
substitutions associated to σε and γε. A computation yields Θσ◦σ′ = Θσ′ ◦ Θσ,
and Proposition 6 allows us to rewrite Theorem 2 in the following way:

Theorem 3. Let Sα,β be a Sturmian stepped plane and (an, εn) be the continued
fraction expansion of (α, β). Then there exists a sequence (Sαn,βn) of Sturmian
stepped planes such that:

∀n ∈ N, Sα,β = Γε1 ◦Σa1
ε1
◦ Γε2 ◦Σa2

ε2
◦ · · · ◦ Γεn ◦Σan

εn
(Sαn,βn) ,

where Γε and Σε are associated to the substitutions defined in Proposition 6.
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We now consider the case of periodic expansions. Let us recall that a sequence
(un) is ultimately periodic with period p and threshold d if n > d ⇒ un+p = un.
If moreover d = 0, the sequence is said purely periodic. In this case, one has:

Theorem 4. Let Sα,β be a Sturmian stepped plane and (an, εn) be the continued
fraction expansion of (α, β). If this expansion is ultimately periodic, then there
exist two generalized substitutions Θd and Θp, and a stepped plane Sp such that:

Sα,β = Θd(Sp), with Sp = Θp(Sp).

And if the expansion is purely periodic, one has simply:

Sα,β = Θp(Sα,β).

Proof. It follows easily from Theorem 2 with:

Θd = Θ(a1,ε1) ◦Θ(a2,ε2) ◦ · · · ◦Θ(ad,εd),

Θp = Θ(ad+1,εd+1) ◦Θ(ad+2,εd+2) ◦ · · · ◦Θ(ad+p,εd+p),

Sp = Sαd,βd
,

where p is the period of the expansion of (α, β) and d its threshold. ��

According to the terminology of [7, 13], Theorem 3 and 4 state that a bidimen-
sional Sturmian sequence Uα,β has always a S-adic expansion, and is substitutive
(resp. a fixed-point of a substitution) if the expansion of (α, β) is ultimately pe-
riodic (resp. purely periodic). Notice that, contrary to the unidimensional case,
we do not yet obtain a complete characterization of bidimensional Sturmian se-
quences that are substitutive or fixed-point of a substitution. We will discuss
this more carefully in the last section.

5 Effective Generation of Stepped Planes

It is to notice that successive applications of generalized substitutions on a finite
initial patch do not necessarily cover, to infinity, the whole stepped plane but
only an infinite subset of it (think for example about a non simply-connected
subset or a cone . . . ). Such a problem, that we investigate in this section, can
however be of great practical interest, for example to effectively generate stan-
dard arithmetic plane in discrete geometry.

The following lemma deals with the “almost” expansivity of a generalized
substitution of Pisot type:

Lemma 1. Let σ be a unimodular substitution σ of Pisot type (all the notations
are those of Section 2). Then there exist k ∈ [0, 1) and C ∈ R+ such that:⎧⎨⎩ (x, i∗) ∈ Sα,β

(y, j∗) ∈ Θσ(x, i∗)
||y|| ≥ C

⇒ ||x|| ≤ k||y||.
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It provides us a case in which one we can generate the whole stepped plane:

Theorem 5. Let Sα,β be a substitutive stepped plane, that is, a stepped plane
such that there exist two generalized substitutions Θd and Θp verifying:

Sα,β = Θd(Sp), with Sp = Θp(Sp).

If Θp is of Pisot type and bijective on the set of faces of Sp, then there exists a
finite patch P of Sp such that:

Sα,β = Θd

(
lim

n→+∞
Θn

p (P )
)

.

Proof. Let C and k be the constants of Lemma 1 for the substitution Θp and
let P be the patch formed by the faces (x, i∗) of Sp such that ||x|| ≤ C.
Let (y, j∗) be a face of Sp. Consider the sequence (ym, j∗m)m≥1 such that (y1, j

∗
1 ) =

(y, j∗) and Θp(ym+1, j
∗
m+1) = (ym, j∗m). This sequence is well defined since Θp is

bijective. While ||ym|| ≥ C, Lemma 1 yields ||ym+1|| ≤ k||ym||, with k < 1.
Hence for m large enough, one has ||ym|| ≤ C, that is, (ym, j∗m) ∈ P and
Θm

p (ym, j∗m) = (y, j∗). ��

In particular, by Theorem 1 and 4, the previous theorem holds if (α, β) has
an ultimately periodic expansion of period p and threshold d, under the hy-
pothesis that Θp = Θ(ad+1,εd+1) ◦Θ(ad+2,εd+2) ◦ · · · ◦Θ(ad+p,εd+p) is of Pisot type
(what can be false since for example Θ(1,1) ◦Θ(1,0) is not of Pisot type). Propo-
sition 6 can be used in practice to iterate on P only four different generalized
substitutions, whatever Θp may be.

Example 2. Let (α, β) have the purely periodic expansion [(1, 1), (1, 0), (1, 0)]∗

(of period three). One computes A(1,0)A(1,0)A(1,1) = M2
σ , where σ is the Rauzy

substitution introduced in Section 2. Thus Θp = Θ(1,1) ◦Θ(1,0) ◦Θ(1,0) is of Pisot
type and Sα,β , fixed-point of Θp, can be generated applying Θp to a finite patch.

Notice that it is easy to see in the previous example that Θp and Θσ have the
same invariant plane, and thus both generate, starting from P , patches of the
same stepped plane. But we shall stress that these patches are not necessarily
the same: there is many way to generate growing parts of the stepped plane.

6 Perspectives

This paper has defined the bidimensional Sturmian sequences (or, equivalently,
the Sturmian stepped planes), on which act the generalized substitutions in-
troduced in [3]. We have proved that every bidimensional Sturmian sequence is
S-adic (according to the terminology of [13]), which extends to the bidimensional
case the analogous result already known for unidimensional Sturmian sequences.

Similarly, the sufficient condition (on ultimately or purely periodic continued
fraction expansions), for unidimensional Sturmian sequences to be substitutive
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or fixed-point of a substitution, has been here extended to an analogous condi-
tion (on Brun’s expansions), for bidimensional Sturmian sequences. However, we
did not prove that our condition is also necessary, though it holds in the unidi-
mensional case. A way to fix that, could be to extend the notion of return word
– introduced in [7] and used to prove the unidimensional case – to some suit-
able bidimensional analogous notion of “return pattern”. Such a bidimensional
extension of return word have already been done in [10]. We hence have good
hopes to complete our characterization of substitutive bidimensional Sturmian
sequences.

As noticed in the introduction, we focused on the homogenous case, that is
the analogous of the unidimensional Sturmian sequences with intercept equals
to zero (that is, Sα,ρ with ρ = 0, according to the notation of the introduction).
Indeed, instead of the plane Pα,β of Definition 1, we should consider the general
case of a plane Pα,β,ρ = t(0, 0, ρ) + Pα,β. In the unidimensional case, taking
into account an intercept ρ just leads to additional conditions that are, roughly
speaking, conditions on the Ostrowski expansion of ρ similarly to the conditions
on the continued fraction expansion of α (see [4]). It remains to give and prove
some similar conditions on the intercept in the bidimensional case.

Last, we could carry out some improvements to the more practical results of
Section 5. Indeed, starting from a finite initial patch to iterate a substitution is
certainly more convenient than starting from the whole plane. But it is not so
easy to compute this finite patch. Could not the unit cube U , which is proved
to be a patch of any stepped plane, suffices to generate the whole plane, as it
is the case for the Rauzy substitution? Some counter-examples prove that the
answer is in general negative, but it would be interesting to characterize the
“good” cases. Similarly, conditions to have the substitution Θp of Theorem 5 of
Pisot type (and thus, suitable to generate the plane) would be interesting.
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Abstract. Motivated by the research on pattern languages, we study
a fundamental combinatorial question on morphisms in free semigroups:
With regard to any string α over some alphabet we ask for the existence
of a morphism σ such that σ(α) is unambiguous, i.e. there is no morphism
ρ with ρ �= σ and ρ(α) = σ(α). Our main result shows that a rich and
natural class of strings is provided with unambiguous morphic images.

1 Introduction

In the past decades a lot of effort has been spent on investigating the properties
of those morphisms which map a string over some alphabet Σ onto a string over
a second alphabet Σ′ (cf., e.g., Lothaire [9], Choffrut and Karhumäki [2], Harju
and Karhumäki [3]). In this context, many problems only arise if Σ contains
more symbols than Σ′, and therefore – in order to address these difficulties as
precisely as possible – we assume, for the remainder of our paper, Σ = N and
Σ′ = {a, b}. Consequently, we regard the set of morphisms mapping the strings
in an infinitely generated free semigroup to the strings in a free monoid with
two generators. According to the closely related research on pattern languages
(cf. Mateescu and Salomaa [10]) we call an element of N+ a pattern and an
element of {a, b}∗ a word. We separate all symbols in a pattern by a dot (see,
e.g., the example pattern α′ below) so as to avoid any confusion.

Quite a number of the basic questions to be asked on suchlike mappings
deals with the problem of finding a morphism which, in spite of the resulting
alphabet reduction, preserves the structure of its input string as far as possible;
this is a manifest topic, e.g., in the theory of codes (cf. Jürgensen and Konstan-
tinidis [5]). Even though any answer to this question strongly depends on the
formal definition of what is considered to be a “structure-preserving” morphism,
from a very intuitive point of view, one surely would agree that, for instance,
the shape of the pattern α′ = 1 · 2 · 3 · 4 · 1 · 4 · 3 · 2 is not adequately reflected
by its morphic image w1 = a10. Obviously, for such a task, a code – that, in
our sense, is nothing but an injective morphism – is a more appropriate choice:
If we apply the morphism σ′(i) = a bi, i ∈ N, to α′ then we receive the word
w2 = σ′(α) = a b a b2 a b3 a b4 a b a b4 a b3 a b2 which, due to the distinct lengths
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of subwords over the single symbol b, that allow the definition of an inverse
morphism, seems to describe its preimage quite accurately.

However, in those settings where we are confronted with a variety of mor-
phic images of one and the same pattern α – such as in inductive inference of
pattern languages (cf., e.g., Angluin [1]), that deals with the inferrability of an
(unknown) pattern from the set of all of its morphic images – the mere injec-
tivity of morphisms can turn out to be insufficient for reflecting the shape of
α. Surprisingly, with regard to these problems, a second property of a morphic
image w demonstrably is much more important, namely its ambiguity (cf. Rei-
denbach [13]), i.e. the question whether there are at least two morphisms σ, ρ
such that, for some symbol i in α, σ(i) �= ρ(i), but nevertheless σ(α) = w = ρ(α).
Returning to our example it can easily be seen that w2 is ambiguous with respect
to α′ as it can, e.g., also be generated by the morphism ρ′ with ρ′(1) = a b a b2,
ρ′(2) = ε, ρ′(3) = a b3 a b2 and ρ′(4) = b2, where ε is the empty word:

σ′(1)︷︸︸︷ σ′(2)︷ ︸︸ ︷ σ′(3)︷ ︸︸ ︷ σ′(4)︷ ︸︸ ︷ σ′(1)︷︸︸︷ σ′(4)︷ ︸︸ ︷ σ′(3)︷ ︸︸ ︷ σ′(2)︷ ︸︸ ︷
a b a b b a b b b a b b b b a b a b b b b a b b b a b b︸ ︷︷ ︸

ρ′(1)
︸ ︷︷ ︸

ρ′(3)
︸︷︷︸
ρ′(4)

︸ ︷︷ ︸
ρ′(1)

︸︷︷︸
ρ′(4)

︸ ︷︷ ︸
ρ′(3)

Consequently, w2 does not adequately substantiate the existence of the symbol
2 in α′ since this symbol is not needed for generating w2; thus, from that point
of view and in spite of its injectivity, we do not consider σ′ to meet our vague
yet well-founded requirements for a structure-preserving morphism. But even
if we restrict our examination to nonerasing morphisms, i.e. if we use the free
semigroup {a, b}+ instead of {a, b}* as value set of the morphisms, the multitude
of potential generating morphisms blurs the evidence of α in w2.

Unfortunately, this ambiguity of words is a frequent property of many pat-
terns, and, effortlessly, examples can be given for which there is no morphism
at all leading to an unambiguous word; on the other hand, it is by no means
obvious for which patterns there exist such structure-preserving morphic images.
In the present paper, we examine this combinatorial problem of intrinsic interest
systematically. To this end, we concentrate on the ambiguity of those words that
are images of injective morphisms, and we explicitly distinguish between the gen-
eral case where the set of all morphisms ρE : N+ −→ {a, b}* is considered and
the restricted case that focuses on nonerasing morphisms ρNE : N+ −→ {a, b}+.
Our paper is organised as follows: After some brief formal definitions we collect
a number of rather evident preliminary results before we show that a rich and
natural class of patterns is characterised by the ability of morphically generating
unambiguous words. This main result answers a question posed in [12].

Obviously, our work shows some connections to equality sets (cf., e.g., Harju
and Karhumäki [3], Lipponen and Păun [8]): If, for some pattern α, we find a
morphism σ such that σ(α) is unambiguous then α is a “non-solution” to the
Post Correspondence Problem for σ and any other morphism ρ. Finally, it seems
worth mentioning that, in a sense, our work complements a research that has
been initiated by Mateescu and Salomaa [11]. As explained above we show that,
for every pattern in some class, there exists at least one word that has exactly
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one generating morphism, whereas, in a more general context, [11] examines the
question whether, for an arbitrary upper bound n ∈ N, there exists at least one
pattern such that each of its morphic images has at most n distinct generating
morphisms. In our restricted setting, for all patterns with occurrences of at least
two different symbols, this question has a trivial answer in the negative.

2 Definitions and Basic Notes

We begin the formal part of this paper with a number of basic definitions. Ma-
jor parts of our terminology are adopted from the research on pattern languages
(cf. Mateescu and Solomaa [10]). Additionally, for notions not explained explic-
itly, we refer the reader to Choffrut and Karhumäki [2].

Let N = {1, 2, 3, . . .} and N0 = N∪{0}. Let Σ be an alphabet, i.e. an enumer-
able set of symbols. We regard two different alphabets: N and {a, b} with a �= b.
Henceforth we call any symbol in N a variable and any symbol in {a, b} a letter.
A string (over Σ) is a finite sequence of symbols from Σ. For the concatenation
of two strings w1, w2 ∈ Σ∗ we write w1 · w2 or simply w1w2. The string that
results from the n-fold concatenation of a string w occasionally is denoted by
wn. |x | stands for the size of a set x or the length of a string x, respectively.
We denote the empty string by ε, i.e. |ε| = 0. In order to distinguish between
a string over N and a string over {a, b}, we call the former a pattern and the
latter a word. We name patterns with lower case letters from the beginning of the
Greek alphabet such as α, β, γ. With regard to an arbitrary pattern α, var(α)
denotes the set of all variables occurring in α. For every alphabet Σ, Σ∗ is the
set of all (empty and non-empty) strings over Σ, and Σ+ = Σ∗ \ {ε}. We say
that a string v ∈ Σ∗ is a substring of a string w ∈ Σ∗ if and only if, for some
u1, u2 ∈ Σ∗, w = u1v u2. Subject to the concrete alphabet considered, we call a
substring a subword or subpattern. Additionally, we use the notions w = . . . v . . .
if v is a substring of w, w = v . . . if v is a prefix of w, and w = . . . v if v is a
suffix of w. |w|v denotes the number of occurrences of a substring v in a string
w. We do not use this notion for substrings with overlapping occurrences.

Since we deal with free semigroups, a morphism σ is a mapping that is
compatible with the concatenation, i.e. for patterns α, β ∈ N+, a morphism
σ : N+ −→ {a, b}* satisfies σ(α · β) = σ(α) · σ(β). Hence, a morphism is fully
explained as soon as it is declared for all variables in N. Note that we restrict
ourselves to total morphisms, even though we normally declare a morphism only
for those variables explicitly that, in the respective context, are relevant.

Let σ : N+ −→ {a, b}* be a morphism. Then σ is called nonerasing provided
that, for every i ∈ N, σ(i) �= ε. Note that σ necessarily is nonerasing if it is injec-
tive. For any pattern α ∈ N+ with σ(α) �= ε, we call σ(α) weakly unambiguous
(with respect to α) if there is no nonerasing morphism ρ : N+ −→ {a, b}+ such
that ρ(α) = σ(α) and, for some i ∈ var(α), ρ(i) �= σ(i). If, in addition, there is
no (arbitrary) morphism ρ : N+ −→ {a, b}* with ρ(α) = σ(α) and ρ(i) �= σ(i)
for some i ∈ var(α), then σ(α) is called (strongly) unambiguous (with respect to
α). Obviously, if σ(α) is strongly unambiguous then it is weakly unambiguous as
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well. Finally, σ(α) is ambiguous (with respect to α) if and only if it is not weakly
unambiguous.

As mentioned above, our subject is closely related to pattern languages (cf.,
e.g., Mateescu and Salomaa [10]), and therefore we consider it useful to provide
an adequate background for some explanatory remarks. The pattern language of
a pattern is the set of all of its possible morphic images in some fixed free monoid
Σ∗ (in our case Σ = {a, b}). More precisely and with regard to any α ∈ N+,
we distinguish between its E-pattern language LE(α) = {σ(α) | σ : N+ −→ Σ∗}
and its NE-pattern language LNE(α) = {σ(α) | σ : N+ −→ Σ+}. Note that this
definition implies that the full class of E-(resp. NE-)pattern languages, i.e. the
set {LE(α) | α ∈ N+} resp. {LNE(α) | α ∈ N+}, considered in this paper merely
covers a special case which, in literature, usually is referred to as terminal-free
(or: pure) pattern languages. This is due to the fact that, contrary to our view,
a pattern commonly is seen as a string in (N ∪Σ)+ and not just in N+.

We conclude the definitions in this section with a crucial partition of the set
of all patterns subject to the following criterion:

Definition 1. We call any α ∈ N+ succinct if and only if there exists no de-
composition α = β0 γ1 β1 γ2 β2 . . . βn−1 γn βn with n ≥ 1, βk ∈ N∗ and γk ∈ N+,
k ≤ n, such that

1. for every k, 1 ≤ k ≤ n, |γk| ≥ 2 ,
2. for every k, 1 ≤ k ≤ n, and for every k′, 0 ≤ k′ ≤ n, var(γk)∩ var(βk′) = ∅,
3. for every k, 1 ≤ k ≤ n, there exists an ik ∈ var(γk) such that |γk|ik

= 1 and,
for every k′, 1 ≤ k′ ≤ n, if ik ∈ var(γk′) then γk = γk′ .

We call α ∈ N+ prolix if and only if it is not succinct.

Example 1. Obviously, any pattern α, |α| ≥ 2, necessarily is prolix if there is a
variable i ∈ N such that |α|i = 1. Our initial example α′ = 1 · 2 · 3 · 4 · 1 · 4 · 3 · 2
and the pattern α1 = 1 · 1 are succinct, whereas α2 = 1 · 2 · 3 · 3 · 1 · 2 · 3 is prolix
with β0 = ε, γ1 = 1 ·2, β1 = 3 ·3, γ2 = 1 ·2 and β2 = 3. Note that this obligatory
decomposition of a prolix pattern does not have to be unique. Additional and
more complex examples can be found in the subsequent sections and in [13].

According to Reidenbach [13] the succinct patterns are the shortest generators
for their respective E-pattern language – this explains the terms “succinct” and
“prolix”. In other words, for every succinct pattern α and for every pattern β,
if LE(α) = LE(β) then |α| ≤ |β|. Consequently, the class of E-pattern languages
equals the set {LE(α) | α ∈ N+, α is succinct} although the set of all patterns
is a proper superset of the set of all succinct patterns.

In addition to this view, the set of prolix patterns exactly corresponds to the
class of finite fixed points of nontrivial morphisms, i.e. for every prolix pattern
α there exists a morphism φ : N* −→ N* such that, for an i ∈ var(α), φ(i) �= i
and yet φ(α) = α (cf., e.g., Head [4], Levé and Richomme [7]).

Finally note that all results in this paper hold for morphisms to arbitrary
finitely generated free monoids with three or more generators instead of {a, b}*
as well. With regard to the positive results, this follows by definition, and the
proofs of the negative results can be adapted with little effort.
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3 Weakly Unambiguous Words

We begin our examination with some momentuous statements on weakly un-
ambiguous morphic images. The first is an evident yet strong positive result:

Proposition 1. There is a nonerasing morphism σ : N+ −→ {a, b}+ such that,
for every α ∈ N+, σ(α) is weakly unambiguous.

Proof. For every i ∈ N, let |σ(i)| = 1. Then, for every α ∈ N+, |σ(α)| = |α| and,
consequently, σ(α) is weakly unambiguous. ��

In Proposition 1 we fully restrict ourselves to nonerasing morphisms, and
therefore the view applied therein exactly corresponds to the concept of NE-
pattern languages. Indeed, the weak unambiguity of the words referred to in the
proof is of major importance for inductive inference of NE-pattern languages:
Due to the fact given in Proposition 1, for every NE-pattern language L a pattern
α with L = LNE(α) can be inferred from the set of all of the shortest words in
this language (shown by Lange and Wiehagen [6]). With regard to E-pattern
languages, however, this is provably impossible since, in general, these words
are not strongly unambiguous (cf. Reidenbach [12]). Consequently, in respect of
pattern inference, the unambiguity of certain words – which are not generated
by an injective morphism – is surprisingly powerful.

For the main goal of our approach (see Section 1), however, injectivity of
morphisms is vital. Unfortunately, for those morphisms the outcome significantly
differs from Proposition 1:

Theorem 1. There is no injective morphism σ : N+ −→ {a, b}+ such that, for
every α ∈ N+, σ(α) is weakly unambiguous.

Proof. Assume to the contrary that there is such a morphism σ. Since σ is
injective, σ(α) �= σ(β) for every α �= β. In particular, this implies σ(i) �= σ(i′)
for every i, i′ ∈ N with i �= i′. Hence, there must be a j ∈ N with σ(j) = w1w2

for some w1, w2 ∈ {a, b}+. Now, for an arbitrary j′ �= j, let α := j · j′. Then,
for the morphism ρ : N+ −→ {a, b}+ given by ρ(j) := w1 and ρ(j′) := w2 σ(j′),
ρ(α) = σ(α), and, thus, σ(α) is ambiguous. This contradicts the assumption. ��

Obviously, Theorem 1 includes the analogous result for strong unambiguity.
Consequently, there is no single injective morphism which, when applied to ar-
bitrary patterns, leads to unambiguous words. Thus, two natural questions arise
from Theorem 1: Is there a significant subclass of all patterns for which the op-
posite of Theorem 1 holds true? Is there at least a way to find for every pattern
an individual injective morphism that leads to an unambiguous word? In the
following section we examine these questions with regard to strong unambiguity.

4 Strongly Unambiguous Words

Bearing the consequences of Theorem 1 in mind the present section deals with
strongly unambiguous words. We begin with the observation that the example
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pattern α in the proof of Theorem 1 is prolix. However, if we focus on suc-
cinct patterns then the analogue turns out to be true; as we now ask for strong
unambiguity we even can prove the opposite of Proposition 1:

Proposition 2. There is no nonerasing morphism σ : N+ −→ {a, b}+ such
that, for every succinct α ∈ N+, σ(α) is strongly unambiguous.

Proof. Assume to the contrary that there is such a morphism. Then there exist
j, j′ ∈ N, j �= j′, and an c ∈ {a, b} with σ(j) = v c and σ(j′) = v′ c, v, v′ ∈ Σ∗.
For some k, k′ ∈ N, k �= k′, j �= k �= j′ and j �= k′ �= j′, we then regard the
pattern α := j · k · j · k′ · j′ · k · j′ · k′. Obviously, α is succinct. Now consider
the morphism ρ, given by ρ(j) := v, ρ(j′) := v′, ρ(k) := c σ(k), ρ(k′) := c σ(k′).
Then evidently σ(α) = ρ(α), but, e.g., σ(j) �= ρ(j). This is a contradiction. ��

Consequently, for every succinct pattern, it is necessary to give an individ-
ual injective morphism that leads to a strongly unambiguous word – provided
that such a morphism exists. The hope for a positive answer to this question
is supported by the following fact whereby, for many patterns, even completely
inappropriate looking morphisms generate a strongly unambiguous word.

Proposition 3. For every nonerasing morphism σ : N+ −→ {a, b}* there exists
a succinct α ∈ N+, | var(α)| ≥ 2, such that σ(α) is strongly unambiguous.

Proof. Since our argumentation solely deals with the length of the morphic im-
ages of the variables, we can utilise the following fact on linear combinations:

Claim 1. For all p, q ∈ N there exist r, s ∈ N, r, s ≥ 2 such that there are no
p′, q′ ∈ N0 \ {p, q} satisfying rp + sq = rp′ + sq′.

With r > q, s > p, and gcd(r, s) = 1, Claim 1 can be proven with a bit of effort.

Now, for some i, j ∈ N, i �= j, let p := |σ(i)|, q := |σ(j)|. Furthermore, let
α := ir · js with r, s derived from Claim 1. Obviously, α is succinct. Assume
to the contrary that there is a morphism ρ : N+ −→ {a, b}* with ρ(α) = σ(α)
and, for some k ∈ {i, j}, ρ(k) �= σ(k). Then ρ must satisfy |ρ(i)| �= |σ(i)|,
|ρ(j)| �= |σ(j)| and |ρ(α)| = |σ(α)|. Consequently, with p′ := |ρ(i)|, q′ := |ρ(j)|,
rp + sq = |σ(α)| = |ρ(α)| = rp′ + sq′. This contradicts Claim 1. ��

Before we go further into this matter of strongly unambiguous morphic im-
ages for succinct patterns (see Theorem 3), we turn our attention to prolix
patterns. Here we can easily give a definite answer, which, alternatively, can be
seen as a consequence of the fact that every prolix pattern is a fixed point of
some nontrivial morphism (cf. Section 2):

Theorem 2. For any prolix α ∈ N+ and for any nonerasing morphism σ :
N+ −→ {a, b}+, σ(α) is not strongly unambiguous.

Proof. Assume to the contrary that there are a prolix pattern α and a nonerasing
morphism σ such that σ(α) is strongly unambiguous. Then, as α is prolix, there
exists a decomposition α = β0γ1β1 γ2β2 . . . βn−1 γn βn satisfying the conditions
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of Definition 1. With regard to this decomposition and for every k, 1 ≤ k ≤ n, let
ik be the smallest i ∈ var(γk) such that |γk|ik

= 1 and, for every k′, 1 ≤ k′ ≤ n,
if ik ∈ var(γk′ ), then γk = γk′ . By definition, for every γk, 1 ≤ k ≤ n, such an ik
exists, and, for every βk′ , 0 ≤ k′ ≤ n, ik �∈ var(βk′). Now we define ρ as follows:
For all k, 1 ≤ k ≤ n, ρ(ik) := σ(γk), for all i ∈ var(γk) \ {ik}, ρ(i) := ε, and, for
all k, 0 ≤ k ≤ n and for all i ∈ var(βk), ρ(i) := σ(i). Then σ(α) = ρ(α), but,
since σ is nonerasing and every γk contains at least two variables, there is an
i ∈ var(α) with σ(i) �= ρ(i). Thus, σ(α) is not strongly unambiguous. ��

Thus, for every prolix pattern there is no strongly unambiguous word at all –
at least as long as we restrict ourselves to the images of nonerasing morphisms.
If this requirement is omitted then we face a fairly intricate situation:

Example 2. Let α1 := 1 · 1 · 2 · 2 · 3 · 4 · 3 · 4, α2 := 1 · 2 · 2 · 1 · 3 · 4 · 3 · 4, and
β1 := 1 ·2 ·3 ·3 ·1 ·2, β2 := 1 ·2 ·2 ·3 ·3 ·1 ·2 ·2. The patterns are prolix. For α1 and
β1 there is no morphism σ such that σ(α1) or σ(β1) are unambiguous. Contrary
to this, for α2 and β2 there exist suitable words such as a b b a and b a a b.

As shown in Example 2, there are prolix patterns for which we can unambigu-
ously map certain subpatterns onto strings in {a, b}*, whereas for different, quite
similar appearing patterns this is impossible. Furthermore, these subpatterns can
consist of parts of some βk as well as parts of some γk in the required decompo-
sition of the patterns (cf. Definition 1). We now briefly discuss this phenomenon,
and we begin with a criterion which covers both prolix and succinct patterns:

Condition 1. A pattern α ∈ N+ satisfies Condition 1 if and only if there exists
an i ∈ var(α) such that, for n = | var(α)| − 1, for all j1, j2, . . . , jn ∈ var(α) \ {i}
and for all k1, k2, . . . , kn ∈ N0, |α|i �= k1|α|j1 + k2|α|j2 + . . . + kn|α|jn .

For those patterns satisfying Condition 1 we can give a positive result:

Proposition 4. For every α ∈ N+ satisfying Condition 1 there exists a mor-
phism σ : N+ −→ {a, b}* such that σ(α) is strongly unambiguous.

Proof. With σ(i) := a (i as defined in Condition 1) and, for all j ∈ N with j �= i,
σ(j) := ε, Proposition 4 follows immediately. ��

For prolix patterns with exactly two different variables, Condition 1 even char-
acterises the subclass for which there are strongly unambiguous words:

Proposition 5. Let α ∈ N+ be prolix, var(α) := {i, j}. Then there exists a
morphism σ : N+ −→ {a, b}* such that σ(α) is strongly unambiguous if and only
if |α|i �= |α|j.

Proof. For the if part, w. l. o. g. assume |α|i < |α|j . Then the existence of a
morphism σ such that σ(α) is strongly unambiguous is guaranteed by Proposi-
tion 4. We proceed with the only if part: Let |α|i = |α|j . Then, since α is prolix,
α can only be of the form (i · j)n (or (j · i)n), n ∈ N. Thus, there is no strongly
unambiguous morphic image for α. ��
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Note that Propositions 4 and 5 utilise a morphism that is non-empty for a single
variable only. In general, of course, one might wish to find a morphism that
assigns non-empty words to a preferably large number of variables in a prolix
pattern and, nevertheless, leads to a strongly unambiguous word (cf. Example 2).
However, as soon as the number of variables to be mapped onto non-empty
words exceeds the number of letters in the target alphabet, we consider it an
extraordinarily challenging problem to find reasonably strong criteria.

We now return to the remaining crucial question of this paper left open after
Propositions 2 and 3 and Theorem 2, namely the existence of injective morphisms
generating strongly unambiguous words for succinct patterns. Particularly the
proof of Proposition 2 suggests that a finitely generated free monoid might not
be rich enough to include strongly unambiguous morphic images for all succinct
patterns. On the other hand, the proof of the comprehensive negative result
for prolix patterns (cf. Theorem 2) strongly utilises the properties of these pat-
terns as declared in Definition 1, and, indeed, our main result (to be proven in
Section 4.1) shows the opposite of Theorem 2 to be true for succinct patterns:

Theorem 3. For every succinct α ∈ N+, there is an injective morphism σ :
N+ −→ {a, b}+ such that σ(α) is strongly unambiguous.

Consequently, for every succinct string in an infinitely generated free semigroup
there is a morphic image in a free monoid with two generators that – in accor-
dance with our requirements explained in Section 1 – sufficiently preserves its
structure. With regard to pattern languages, Theorem 3 proves that in every
E-pattern language there is an unambiguous word with respect to any shortest
generating pattern. For a restatement of our main result in terms of equality sets
or fixed points of morphisms, see the notes in Section 1 or Section 2, respectively.

Finally, we can use Theorems 2 and 3 for a characterisation of succinctness:

Corollary 1. Let α ∈ N+. Then α is succinct if and only if there exists an
injective morphism σ : N+ −→ {a, b}+ such that σ(α) is strongly unambiguous.

4.1 Proof of Theorem 3

We begin this section with a procedure which, for every succinct pattern, con-
structs a morphism that generates a strongly unambiguous word:

Definition 2. Let α ∈ N+. For every j ∈ var(α), consider the following sets:
Lj := {k | α = . . . · k · j · . . .} and Rj := {k | α = . . . · j · k · . . .}. Thus, Lj

consists of all “left neighbours” of j in α and Rj of all “right neighbours”. With
these sets, construct two relations ∼l and ∼r on var(α): For all k, k′ ∈ var(α)

– k ∼l k′ if and only if there are j1, j2, . . . , jt ∈ var(α), t ≥ 1, such that
1. Lj1 ∩ Lj2 �= ∅, Lj2 ∩ Lj3 �= ∅, . . ., Ljt−1 ∩ Ljt �= ∅ and
2. k ∈ Lj1 and k′ ∈ Ljt.

– k ∼r k′ if and only if there are j1, j2, . . . , js ∈ var(α), s ≥ 1, such that
1. Rj1 ∩Rj2 �= ∅, Rj2 ∩Rj3 �= ∅, . . ., Rjs−1 ∩Rjs �= ∅ and
2. k ∈ Rj1 and k′ ∈ Rjs .



256 Dominik D. Freydenberger, Daniel Reidenbach, and Johannes C. Schneider

Evidently, ∼l and ∼r are equivalence relations, and, for every k ∈ var(α), there
exist equivalence classes L∼ and R∼ with k ∈ L∼ and k ∈ R∼. Given in arbitrary
order each, let L∼

1 , L∼
2 , . . . , L∼

p be all equivalence classes resulting from ∼l and
R∼

1 , R∼
2 , . . . , R∼

q all equivalence classes resulting from ∼r. Consequently, L∼
1 ∪

L∼
2 ∪ . . . ∪ L∼

p and R∼
1 ∪ R∼

2 ∪ . . . ∪ R∼
q are two disjoint partitions of var(α)

induced by ∼l and ∼r. Then, for i ∈ {1, 2, . . . , p}, i′ ∈ {1, 2, . . . , q} and for every
k ∈ var(α), the morphism σsu

α is given by

σsu
α (k) :=

⎧⎪⎪⎨⎪⎪⎩
a b3k a a b3k+1 a a b3k+2 a , � i : k = minL∼

i ∧ � i′ : k = minR∼
i′ ,

b a3k b a b3k+1 a a b3k+2 a , � i : k = minL∼
i ∧ ∃ i′ : k = minR∼

i′ ,
a b3k a a b3k+1 a b a3k+2 b , ∃ i : k = minL∼

i ∧ � i′ : k = minR∼
i′ ,

b a3k b a b3k+1 a b a3k+2 b , ∃ i : k = minL∼
i ∧ ∃ i′ : k = minR∼

i′ .

Obviously, for every α ∈ N+, σsu
α is injective.

As an illustration of Definition 2 we now identify σsu
α for an example pattern:

Example 3. Let α := 1 · 2 · 3 · 1 · 2 · 4 · 3 · 1 · 2 · 3 · 2 · 4. Evidently, α is succinct
(cf. Definition 1). Then L1 = {3}, L2 = {1, 3}, L3 = {2, 4}, L4 = {2} and R1 =
{2}, R2 = {3, 4}, R3 = {1, 2}, R4 = {3}. This leads to L∼

1 = {1, 3}, L∼
2 = {2, 4}

and R∼
1 = {1, 2}, R∼

2 = {3, 4}, and, thus, σsu
α (1) = b . . . b, σsu

α (2) = a . . .b,
σsu

α (3) = b . . . a and σsu
α (4) = a . . . a.

Note that, for the pattern in Example 3, the injective morphism σ′(i) = a bi,
i ∈ N, generates an unambiguous word as well, and even the non-injective mor-
phism σ′′ given by σ′′(2) := b, σ′′(1) = σ′′(3) = σ′′(4) := a has this property. Ad-
ditionally, for every pattern α satisfying, for some n ≥ 1 and p1, p2, . . . , pn ≥ 2,
α = 1p1 · 2p2 · . . . · npn , σ′(α) is known to be strongly unambiguous (cf. Reiden-
bach [12]). Thus, σsu

α is “sufficient” for generating an unambiguous word (as to
be shown in the subsequent lemmata), but, in general, it is not “necessary” since
there can be significantly shorter words with the desired property. Contrary to
this, for our initial example α′, it is obviously necessary to give a morphism
which is more sophisticated than σ′ (cf. Section 1).

As the underlying principles of both Definition 2 and the subsequent lemmata
are fairly complex we now briefly discuss the line of reasoning in this section: The
basic idea for Definition 2 is derived from the proof of Proposition 2. Therein, we
can observe that, for the abstract example pattern, the ambiguity of the regarded
word is caused by the fact that, for all of the left neighbours of some variables
(i.e., in terms of Definition 2, for some Li), the morphic images end with the same
letter. We call an Li (morphically) homogeneous (with respect to a morphism σ)
if it shows such a property. Thus, it seems reasonable to choose a morphism
such that in each Li with |Li| ≥ 2 there are two variables whose morphic images
end with different letters (or, in other words, convert Li into a (morphically)
heterogeneous set), but this idea may lead to conflicting assignments:

Example 4. Let α := 1 · 2 · 3 · 2 · 1 · 3 · 1. Thus, L1 = {2, 3}, L2 = {1, 3} and
L3 = {1, 2}. Then, for a binary alphabet, there is no morphism σ such that, at
a time, L1, L2 and L3 are morphically heterogeneous with respect to σ.
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Fortunately, a thorough combinatorial consideration shows that it suffices to
guarantee heterogeneity of each L∼

i (cf. Lemma 2); as these sets are disjoint, this
avoids any contradictory assignments. Note that these statements analogously
hold for Ri and R∼

i (regarding the first letter of the morphic images of the
variables in these sets instead of the last one).

Before we formally analyse the consequences of morphic heterogeneity we
now address the injectivity of σsu

α . Of course, according to our goal of finding a
structure-preserving morphic image, we have to choose injective morphisms; in
addition, however, we can observe that non-injectivity can cause ambiguity:

Example 5. Let α := 1 ·2 ·1 ·3 ·2 ·1 ·4 ·3 ·4 ·5 ·6 ·7 ·6 ·5 ·6 ·7 ·1 ·7 ·2. This pattern
is succinct, and L∼

1 = var(α), R∼
1 = var(α). Then, for L∼

1 and R∼
1 , the non-

injective morphism σ given by σ(1) := b and σ(i) := a, i ∈ var(α) \ {1} leads to
the desired heterogeneity. Nevertheless, there is a morphism ρ with ρ(α) = σ(α)
and ρ �= σ, namely ρ(4) := ε, ρ(5) := a a and ρ(i) := σ(i), i ∈ var(α) \ {4, 5}.
The injectivity of σsu

α is brought about by the assignment of three unique seg-
ments c dm c, c, d ∈ {a, b}, c �= d, m ∈ N, to each variable. This allows to prove
the following phenomenon, which, in a similar way, has been examined in [13]:

Lemma 1. Let α ∈ N+ be succinct. Then, for every morphism ρ : N+ −→
{a, b}* with ρ(α) = σsu

α (α) and for every i ∈ var(α), ρ(i) = . . . g a b3i+1 a h . . . ,
g, h ∈ {a, b}.
Lemma 1 requires an extensive reasoning. Due to space constraints, we omit the
proof and refer the reader to Lemma 1 in [13], which can give a rough idea of it.

We conjecture that strong unambiguity can also be ensured by a morphism
which, for every variable i ∈ N, assigns only the first and the last segment of
σsu

α (i) to i, but, in this case, we expect the proof of the equivalent to the following
lemma to be significantly more difficult.

As explained above, we now conclude the proof of our main result with the
examination of the use of morphic heterogeneity:

Lemma 2. Let α ∈ N+ be succinct. If, for every morphism ρ : N+ −→ {a, b}*
with ρ(α) = σsu

α (α) and for every i ∈ var(α), ρ(i) = . . . a b3i+1 a . . . then σsu
α (α)

is strongly unambiguous.

Proof. If | var(α)| = 1 then every morphic image of α is strongly unambiguous,
and therefore, in this case, Lemma 2 holds trivially. Hence, let | var(α)| ≥ 2. We
start the proof with a small remark that is needed at several stages of the proof:

Claim 1. For every i ∈ var(α), c, d ∈ {a, b}, c �= d, and y ∈ {0, 1, 2}, ρ(i) �=
. . . c d3i+y c . . . c d3i+y c . . . .

Proof (Claim 1). Claim 1 directly follows from the precondition ρ(α) = σsu
α (α)

since, obviously, |σsu
α (α)|c d3i+y c = |α|i. �(Claim 1 )

Now assume to the contrary that there is a morphism ρ with ρ(α) = σsu
α (α)

such that, for every i ∈ var(α), ρ(i) = . . . a b3i+1 a . . . and, for some i′ ∈
var(α), ρ(i′) �= σsu

α (i′). Then there necessarily is a j ∈ var(α) such that, for some
c, d, e, f, g, h ∈ {a, b}, c �= d, e �= f,
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(a) ρ(j) = . . . g c d3j c a b3j+1 a . . . or
(b) ρ(j) = . . . a b3j+1 a e f3j+2 e h . . . .

We restrict the following reasoning to case (a) since an analogous argumentation
can be applied to case (b) (using∼r instead of∼l): Note that, due to | var(α)| ≥ 2
and the succinctness of α, |α|j ≥ 2 and therefore Lj �= ∅ (for the definition of
Lj , see Definition 2). Hence, let k be an arbitrary variable in Lj. Consequently,
for any c, d ∈ {a, b}, c �= d, ρ(k) �= . . . c d3k+2 c.

Case 1: α = j . . . .
Then we can directly follow from Claim 1: σsu

α (α) = e f3j e . . . �= ρ(α) =
. . . g c d3j c . . . , with c, d, e, f, g ∈ {a, b}, c �= d, e �= f. This contradicts the
condition σsu

α (α) = ρ(α).

Case 2: α = . . . k .
Then σsu

α (α) = . . . c d3k+2 c �= ρ(α) since ρ(k) �= . . . c d3k+2 c for c, d ∈ {a, b},
c �= d. This again contradicts the condition σsu

α (α) = ρ(α).

Case 3: α �= j . . . and α �= . . . k.
For the equivalence classes L∼

1 , L∼
2 , . . . , L∼

p derived from the construction of σsu
α ,

let ι ∈ {1, 2, . . . , p} with Lj ⊆ L∼
ι . Then, since all L∼

1 , L∼
2 , . . . , L∼

p are pairwise
disjoint, this ι is unique. Now we can collect a number of facts that facilitate the
argumentation in Case 3. The first holds as α is succinct:

Claim 2. If α �= j . . . and α �= . . . k then |L∼
ι | ≥ 2.

Proof (Claim 2). If |Lj | ≥ 2 then Claim 2 holds trivially. Hence, let Lj = {k}.
Then, for every occurrence of j in α, the conditions α �= j . . . and |α|j ≥ 2
lead to α = . . . k · j . . . . Thus, due to the succinctness of α, there are some
j1, j2, . . . , jm ∈ var(α), m ≥ 2, with α = . . . k · jr . . . , 1 ≤ r ≤ m. Additionally,
because of α �= . . . k, there must be an s ∈ {1, 2, . . . ,m} and a k̄ ∈ var(α),
k̄ �= k, with α = . . . k̄ · js . . ., since, otherwise, α would either be prolix or start
with a jr, r ∈ {1, 2, . . . ,m}, leading to the same argumentation as in Case 1.
Consequently, Ljs ⊇ {k, k̄} and therefore Lj ⊂ {k, k̄} ⊆ Ljs ⊆ L∼

ι . �(Claim 2 )

Now, for every L∼ among L∼
1 , L∼

2 , . . . , L∼
p , the next fact follows by definition

since these equivalence classes are composed by union of non-disjoint sets (cf.
Definition 2 and, e.g., Example 3):

Claim 3. If |L∼| ≥ 2 then, for every k̂ ∈ L∼, there is an Lĵ ⊆ L∼ with |Lĵ| ≥ 2
and k̂ ∈ Lĵ.

We conclude the list of preliminary claims with the following one, that deals
with a crucial phenomenon which is reflected in the transitivity of ∼l:

Claim 4. For every k̂ ∈ L∼
ι and any e, f ∈ {a, b}, e �= f, ρ(k̂) �= . . . e f3k̂+2 e . . . .

Proof (Claim 4). With regard to any k̂′ ∈ Lj ⊆ L∼
ι , Claim 4 holds because of the

precondition ρ(i) = . . . a b3i+1 a . . . , i ∈ var(α), because of Claim 1 and the fact
that, for some c, d, e, f ∈ {a, b}, c �= d, e �= f, ρ(j) = . . . e c d3j c a b3j+1 a . . .
and

ρ(k̂′ · j) = . . . a b3k̂′+1 a e f3k̂′+2 e c d3j c a b3j+1 a . . . .
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We now regard all k̂′′ ∈ L∼
ι for which there is an Lj′ with k̂′, k̂′′ ∈ Lj′ (recall

that k̂′ ∈ Lj). Then – since Claim 4 is satisfied for k̂′ and, consequently, ρ(j′) =
. . . e c d3j′ c a b3j′+1 a . . . , c, d, e ∈ {a, b}, c �= d – Claim 4 holds for these
k̂′′ as well. Now we proceed to all k̂′′′ ∈ L∼

ι for which there is an Lj′′ with
k̂′′, k̂′′′ ∈ Lj′′ (recall that k̂′′ ∈ Lj′). Then, as Claim 4 is satisfied for k̂′′, Claim 4
holds for all k̂′′′ and so on. Consequently, according to the construction of L∼

ι

(cf. Definition 2) Claim 4 holds for every k̂ ∈ L∼
ι . �(Claim 4 )

We now can conclude our argumentation on Case 3: According to Claim 2,
|L∼

ι | ≥ 2. Let k� := minL∼
ι ; then, due to Claim 3, there is an j� ∈ var(α)

with k� ∈ Lj�
and |Lj�

| ≥ 2. Consequently, let k̄� ∈ var(α) with k� �= k̄� and
{k�, k̄�} ⊆ Lj�

. Then, because of k� = minL∼
ι and k̄� ∈ L∼

ι , σsu
α (k�) = . . . b and

σsu
α (k̄�) = . . . a. Referring to the condition ρ(i) = . . . a b3i+1 a . . ., i ∈ var(α), to

Claim 1 and to Claim 4, these different endings of σsu
α (k�) and σsu

α (k̄�) imply

. . . b c d3j� c a b3j�+1 a . . . = ρ(j�) = . . . a c d3j� c a b3j�+1 a . . . ,

for some c, d ∈ {a, b}, c �= d. This contradicts a �= b. ��
With Lemma 1 and Lemma 2, Theorem 3 follows immediately.

Acknowledgements. The authors are indebted to Frank Hechler and the refer-
ees for numerous useful comments and, in particular, for pointing out the analogy
between prolix patterns and fixed points of morphisms.
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4. T. Head. Fixed languages and the adult languages of 0L schemes. Intern. J. of

Computer Math., 10:103–107, 1981.
5. H. Jürgensen and S. Konstantinidis. Codes. In [14].
6. S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-

guages. New Generation Comput., 8:361–370, 1991.
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Abstract. We study the relationship between the sizes of two-way finite
automata accepting a language and its complement. In the deterministic
case, by adapting Sipser’s method, for a given automaton (2dfa) with n
states we build an automaton accepting the complement with at most
4n states, independently of the size of the input alphabet. Actually, we
show a stronger result, by presenting an equivalent 4n–state 2dfa that
always halts.
For the nondeterministic case, using a variant of inductive counting, we
show that the complement of a unary language, accepted by an n–state
two-way automaton (2nfa), can be accepted by an O(n8)–state 2nfa.
Here we also make the 2nfa halting. This allows the simulation of unary
2nfa’s by probabilistic Las Vegas two-way automata with O(n8) states.

Keywords: automata and formal languages; descriptional complexity.

1 Introduction

Automata theory is one of the oldest topics in computer science. In spite of that,
there is a renewed interest in this subject recently. In particular, two aspects of
automata theory have been extensively investigated: nonstandard models and
descriptional complexity.

Nonstandard models of automata (among others, probabilistic [15], Las Ve-
gas [6], self-verifying [1], and quantum [9, 13]) differ from classical ones in the
transition rules and/or in the acceptance conditions.

Descriptional complexity compares formal systems with respect to their con-
ciseness. (For a recent survey, see [4].) Several variants of finite automata are
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known from the literature (one-way or two-way, deterministic or nondeterminis-
tic, . . . , see, e.g., [5]). They all have the same computational power. In fact, they
characterize the class of regular languages. However, two different models may
require a considerably different number of states for the same language. The first
widely known result in this sense compares nondeterminism with determinism
for one-way finite automata (1nfa versus 1dfa): each n–state 1nfa can be simu-
lated by a 1dfa with 2n states. Moreover, for each n, there is a language accepted
by an n–state 1nfa such that each equivalent 1dfa has at least 2n states. Thus,
in general, we cannot do any better [12, 14].

The corresponding gap for two-way machines (2nfa versus 2dfa), conjectured
by Sakoda and Sipser in 1978 [16], is still open. In the unary case, i.e., for
automata with a single letter input alphabet, a subexponential simulation of
2nfa’s by 2dfa’s has been obtained [3].

In this paper, we study the relationship between the sizes of two-way au-
tomata accepting a language and its complement. (Related topics for one-way
automata have been recently considered in [8, 10]).

In the deterministic case, for a given 2dfa with n states, we show how to
build a 2dfa accepting the complement with at most 4n states. This improves
the known upper bound [18], from O(n2) to O(n). The construction does not
depend on the size of the input alphabet1. Actually, our result is stronger: we
prove that each n–state 2dfa can be simulated by a 2dfa with 4n states that
halts on any input.

For the nondeterministic case, we show that the complement of a unary
language accepted by an n–state 2nfa, can be accepted by an O(n8)–state 2nfa.
The construction is based on a variant of inductive counting [2, 7, 19]. Here we
also prove a stronger result, namely, each unary n–state 2nfa can be replaced by
an equivalent O(n8)–state self-verifying automaton (2svfa) which halts on any
input. (Self-verifying machines are a special case of nondeterministic machines.
The complement for a self-verifying automaton can be immediately obtained by
exchanging accepting with rejecting states.)

We were not able to resolve the problem of the complement for 2nfa’s in the
general (nonunary) case. As we will discuss in Section 6, the problem of stating
the gap (in terms of the number of states) between 2nfa’s and 2nfa’s accepting
the complement turns out to be harder than the conjecture of Sakoda and Sipser,
mentioned above.

As a consequence of our result concerning the complementation of unary
2nfa’s, we also state a connection with Las Vegas automata. In particular, we
show that unary 2nfa’s can be simulated by two-way Las Vegas automata with
a polynomial number of states.

1 In [18], it was pointed out that, besides O(n2), we can use a modified construction
with O(n·m2) states, where n is the number of states of the original machine and
m the size of the input alphabet. This gives a linear upper bound for languages
over a fixed input alphabet, but not in the general case. (For example, the results
presented in [8] consider witness regular languages with the alphabet size growing
exponentially in n)
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Due to lack of space, the details of the proofs are omitted in this version of
the paper.

2 Basic Definitions

Here we briefly recall some basic definitions concerning finite state automata.
For a detailed exposition, we refer the reader to [5]. Given a set S, |S| denotes
its cardinality and 2S the family of all its subsets. Given an alphabet Σ, the
complement of a language L ⊆ Σ∗ is the language Lc = Σ∗\L.

A two-way nondeterministic finite automaton (2nfa, for short) is defined as
a quintuple A = (Q,Σ, δ, q0, F ) in which Q is the finite set of states, Σ is
the finite input alphabet, δ : Q × (Σ ∪ {&,*}) → 2Q×{−1,0,+1} is the transi-
tion function, &,* �∈ Σ are two special symbols, called the left and the right
endmarker, respectively, q0 ∈ Q is the initial state, and F ⊆ Q is the set of
accepting (final) states. Input is stored on the input tape surrounded by the two
endmarkers. The cells of the input tape are numbered from left to right, begin-
ning with zero for the left endmarker. In one move, A reads an input symbol,
changes its state, and moves the input head one cell to the right, left, or keeps
it stationary, depending on whether δ returns +1, −1, or 0, respectively. If, for
some q ∈ Q and a ∈ Σ ∪ {&,*}, we have |δ(q, a)| > 1, the machine makes a
nondeterministic choice. If |δ(q, a)| = 0, the machine halts . The machine ac-
cepts the input, if there exists a computation path from the initial state q0 with
head on the left endmarker to some accepting state q ∈ F . The language ac-
cepted by A, denoted by L(A), consists of all input strings that are accepted.
The automaton A is said to be deterministic (2dfa), whenever |δ(q, a)| ≤ 1 for
all q ∈ Q and a ∈ Σ ∪ {&,*}. With a slight abuse of notation, we shall then
write δ(q, a) = undefined, instead of δ(q, a) = ∅, and δ(q, a) = (q′, d), instead of
δ(q, a) = {(q′, d)}. A (non)deterministic automaton is one-way (1nfa or 1dfa), if
it never moves the head to the left, i.e., if (q′, d) ∈ δ(q, a) implies d �=−1.

We call unary any automaton that works with a single letter input alphabet.
An automaton is halting if no computation path can get into an infinite loop, that
is, on every input, each computation path halts after a finite number of steps.
We say that an automaton A is almost equivalent to an automaton A′, if the
languages accepted by A and A′ coincide, with the exception of a finite number
of strings. If these two languages coincide on all strings, with no exceptions,
A and A′ are (fully) equivalent.

In what follows, we are particularly interested in weaker versions of 2nfa’s
and 2dfa’s:

Definition 2.1.

– A quasi-sweeping automaton (qsnfa) is a 2nfa performing both input head
reversals and nondeterministic choices only at the endmarkers [11]. If, more-
over, the above automaton is deterministic, we call it sweeping (qsdfa) [17].
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– A two-way self-verifying automaton (2svfa) A [1] is a 2nfa which, besides
the set of accepting states F ⊆ Q, is equipped also with F r ⊆ Q, a set of
so-called rejecting states. For each input w∈L(A), there exists at least one
computation path halting in an accepting state q∈F, and no path halts in a
state q∈F r. Conversely, for w �∈L(A), there exists at least one path halting
in a rejecting q ∈ F r, and no path halts in a state q ∈ F. A 2svfa can be
quasi-sweeping (qssvfa) or one-way (1svfa), with the obvious meaning.

Note that some computation paths of a 2svfa may result in a “don’t-know”
answer, since the machine may also halt in states that are neither in F nor
in F r, or it may get into an infinite loop. Self-verifying two-way automata can
be regarded as a generalization of 2dfa’s. For example, a machine for the com-
plement of L(A) can be immediately obtained from A by exchanging accepting
with rejecting states.

3 Complement for Deterministic Machines

In this section, we show that, for deterministic two-way finite state automata, the
construction of an automaton for the complement of the language accepted by
the original machine requires only a linear increase in the number of states. More
precisely, we show that any n–state 2dfa A can be transformed into a 4n–state
halting 2dfa A′ that accepts L(A)c. Moreover, if the original machine already
halts on every input, then n states are sufficient, that is, converting A into A′

does not increase the number of states. As a consequence, we also get that any
n–state 2dfa A can be replaced by an equivalent 4n–state halting 2dfa A′. This
reduces the known upper bound [18], from O(n2) to O(n).

First of all, we notice that if A accepts either the empty language or all
strings in Σ∗ then the result is trivial. Therefore, we assume that L(A) does not
coincide with ∅ or Σ∗, and hence A has at least one accepting state and that
the initial state q0 is not accepting. We can make the following assumptions on
the given 2dfa A, without increasing its number of states:

Lemma 3.1. Each n–state 2dfa can be replaced by an equivalent 2dfa A, with
at most n states, such that

– A has exactly one accepting state qf , different from the initial state q0,

– δ(qf , a) =
{

(qf ,−1) if a �=&,
undefined if a =&,

– A does not perform stationary moves.
– If, moreover, the original machine halts on every input, then so does A.

Now we can turn our attention to the problem of replacing the given automa-
ton A by a machine A′ accepting the complement of L(A). Since A is determin-
istic, such a construction causes no problems, provided that A halts on every
input : First, put the machine A into the normal form presented in Lemma 3.1.
Then δ′, the transition function for the automaton A′, is obtained as follows.



264 Viliam Geffert, Carlo Mereghetti, and Giovanni Pighizzini

– If, for some q ∈ Q\{qf}, a ∈ Σ∪{&,*}, and d ∈ {−1,+1}, we have δ(q, a) =
(qf , d), then let δ′(q, a) = undefined.

– Similarly, if δ(q, a) = undefined, then δ′(q, a) = (qf ,−1) for a �=&, but
δ′(q, a) = (qf ,+1) for a =&.

– Otherwise, δ′(q, a) = δ(q, a). This includes the case of q = qf , that is,
δ′(qf , a) = δ(qf , a), as presented in Lemma 3.1.

– The initial and final states of A′ are the same as those of A.

Since, by assumption, A is halting and, by Lemma 3.1, q0 �= qf , it is obvious
that A′ accepts if and only if A does not accept.

Corollary 3.2. For each n–state halting 2dfa A, there exists an n–state halting
2dfa A′ accepting L(A)c.

Note that the assumption about halting is essential for the trivial construc-
tion above. If, for some input w ∈ Σ∗, A gets into an infinite loop, then A′ will
also get into an infinite loop, and hence w will be rejected both by A and A′.

To avoid this problem, we shall now present the construction of the halting
2dfa A′, by suitably refining Sipser’s construction for space bounded Turing
machines [18]. To make our result more readable, we first recall Sipser’s original
construction (restricted to the case of 2dfa’s in the normal form presented in
Lemma 3.1).

For each w ∈ Σ∗, a deterministic machine accepts w if and only if there is
a “backward” path, following the history of computation in reverse, from the
unique accepting configuration (qf , 0) to the unique initial configuration (q0, 0).
A “configuration” is a pair (q, i), where q ∈ Q is a state and i ∈ {0, . . . , |w|+ 1}
a position of the input head.

Consider the graph whose nodes represent configurations and edges compu-
tation steps. Since A is deterministic and δ(qf ,&) = undefined, the component of
the graph containing (qf , 0) is a tree rooted at this configuration, with backward
paths branching to all possible predecessors of (qf , 0). In addition, no backward
path starting from (qf , 0) can cycle (hence, it is of finite length), because the
halting configuration (qf , 0) cannot be reached by a forward path from a cycle.

Thus, the machine for the complement of L(A) can perform a depth-first
search of this tree in order to detect whether the initial configuration (q0, 0)
belongs to the predecessors of (qf , 0). If this is the case, the simulator rejects.
On the other hand, if the whole tree has been examined without reaching (q0, 0),
the simulator accepts.

The depth-first search strategy visits the first (in some fixed lexicographic
order) immediate predecessor of the current configuration that has not been
visited yet. If there are no such predecessors, the machine travels along the edge
toward the unique immediate successor. (Traveling forward along an edge is
simulated by executing a single computation step of A, traveling backward is a
corresponding “undo” operation).

For this search, the simulator has only to keep, in its finite control, the state q
related to the currently visited configuration (q, i) (the input head position i is
represented by its own input head), together with the information about the



Complementing Two-Way Finite Automata 265

previous visited configuration (its state and input head position relative to the
current position, i.e., a number ±1). Hence, the simulator uses O(n2) states.

Now we present our improvements to this procedure. First, fix a linear order
on the state set of the original automaton, so that the final state qf is the
maximum. Hence, q < qf for any q ∈ Q\{qf}. As usual, the symbols “<”
and “>” denote the ordering relation.

Our implementation of the depth-first search examines each configuration
(q, i) in two modes; (1) examination of the “left” predecessors of (q, i), that is,
immediate predecessors with input head at the position i−1, (2) examination of
the “right” predecessors, positioned at i+1. For each q ∈ Q and each of these
modes, we introduce a starting and a finishing state. So the machine for the
complement uses the following set of states:

Q′ = {q↖, q↓1, q↗, q↓2 : q ∈ Q} .

These 4n states are interpreted as follows:

q↖ starting state for Mode 1, examination of left predecessors for the configu-
ration (q, i). A left predecessor is a configuration (p, i−1), with the input
head scanning a symbol a, such that δ(p, a) = (q,+1). Left predecessors will
be examined one after another, according to the linear order induced by
the relation “<”. To inspect the content of the input square i−1 (that is,
the symbol a), the simulator A′ (if it is in the state q↖) has its input head
one position to the left of the actual position of the original machine A in
configuration (q, i).

q↓1 finishing state for Mode 1. All the left predecessors of (q, i) have been ex-
amined, but we still have to examine the right predecessors of (q, i). In the
state q↓1, the input head of the simulator A′ is in the actual position, i.e.,
the position i.

q↗ starting state for Mode 2, examination of right predecessors for (q, i), when
the left predecessors have been finished. A right predecessor is a configuration
(p, i+1), with the head scanning a symbol a, such that δ(p, a) = (q,−1). The
right predecessors will also be examined in the linear order induced by “<”.
In the state q↗, the simulator A′ has its input head one position to the right
of the actual position of the configuration (q, i), to inspect the symbol a in
the input square i+1.

q↓2 finishing state for Mode 2. Both the left and the right predecessors of (q, i)
have been examined. In the state q↓2, the input head of A′ is in the actual
position, i.e., the position i.

The formal definition of the transition function δ′ : Q′ × (Σ ∪ {&,*}) →
Q′ × {−1, 0,+1} implementing this strategy is omitted for lack of space.

Since the original machine A accepts by halting in (qf , 0) , and this configu-
ration does not have any left predecessor, to decide whether an input is accepted,
we can start the depth-first search from the state qf ↓1, with the head on the left
endmarker. Furthermore, δ′ is defined in such a way that (i) either the input is
accepted by A, and then the machine A′ aborts its search in the state q0↓2 at the
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left endmarker, (ii) or the input is rejected by A, and then A′ stops by reaching
qf ↓2 at the right endmarker. In conclusion, we can set q′0 := qf ↓1 as initial state,
and q′f := qf ↓2 as final state. This construction leads to

Theorem 3.3. For each n–state 2dfa A, there exists a 4n–state halting 2dfa A′

accepting L(A)c.

By Theorem 3.3 and Corollary 3.2, we get:

Corollary 3.4. Each n–state 2dfa can be replaced by an equivalent 4n–state
halting 2dfa.

4 Complement for Unary Nondeterministic Machines

This section is devoted to the problem of the complement for nondeterministic
two-way automata. As we will discuss in Section 6, for arbitrary alphabets this
problem is harder than the most famous open question in this field, posed by
Sakoda and Sipser [16].

However, the situation is different for the case of unary regular languages.
Using a modified version of inductive counting [2, 7, 19], we first replace a given
unary 2nfa by an equivalent two-way automaton that is quasi-sweeping, self-
verifying, and halting, using only a polynomial number of states. From such an
automaton, building an automaton for the complement is straightforward.

First of all, we make our 2nfa quasi-sweeping, paying only by a linear increase
in the number of states:

Theorem 4.1. (Geffert, Mereghetti, and Pighizzini [3, Thm. 2]) For each n–
state unary 2nfa, there exists an almost equivalent qsnfa A with no more than
2n+2 states. The language L(A) coincides with the original language on strings
of length greater than 5n2.

Moreover, for each accepted input, A has at least one computation path halt-
ing with the head at the left endmarker, in a unique accepting state qf . The
machine A does not perform any stationary moves, with the exception of the last
computation step, when it enters qf .

Theorem 4.1 allows us to consider a qsnfa A almost equivalent to the original
2nfa. Hence, any accepting computation follows a very regular pattern consisting
of an alternation of nondeterministic choices at the endmarkers with determinis-
tic left-to-right and right-to-left input traversals (or sweeps), until the final state
qf is reached by a single stationary move at the left endmarker.

In our simulation, we shall need a linear order on the state set Q, as in
Section 3. Moreover, it will be useful to introduce a set Qf ⊆ Q of states possibly
leading to acceptance, that is, the set from which the final state qf is reachable
by a single stationary move on the left endmarker:

Qf = {q ∈ Q : (qf , 0) ∈ δ(q,&)} .
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Now we are ready to present the main result of this section, the simulation
of A by an automaton that is self-verifying. For reader’s ease of understanding,
we prefer to present the simulating qssvfa A′ in the form of an algorithm, written
as high-level code. We will then informally discuss the actual implementation,
evaluating the number of states required. In the following code, we use two
subroutines, whose implementation is omitted for lack of space:

– simulation(t): a nondeterministic function, returning a nondeterministically
chosen state q that is reachable by a computation path of A in exactly t
traversals from the initial configuration. The call of this function may also
abort the entire simulation by halting in a “don’t-know” state q?, due to
a wrong sequence of nondeterministic guesses, if the chosen path halts too
early, not having completed t traversals.

– reach(qprev, q
′, dir): a deterministic function, with dir ∈ {0, 1}. It returns

true/false, depending on whether the state q′ can be reached from the state
qprev by a left-to-right traversal of the input (for dir = 0), or by a right-to-left
traversal (for dir = 1), without performing stationary moves.

The nondeterministic simulation algorithm, based on the well-known induc-
tive counting technique, is displayed in Figure 1.

1: m′ := 1;
2: for t := 0 to 2|Q| − 1 do
3: m := m′; m′ := 0;
4: foreach q′ ∈ Q do
5: for i := 1 to m do
6: q := simulation(t);
7: if i > 1 and q ≤ qprev then halt in q?;
8: qprev := q;
9: if reach(qprev, q′, tmod 2) then

10: if t is odd and q′ ∈ Qf then halt in qyes;
11: m′ := m′+1; goto next q′

12: end end
13: next q′: end
14: end;
15: halt in qno

Fig. 1. The simulation procedure

Basically, the algorithm proceeds by counting, for t = 0, . . . , 2|Q| − 1, the
number of states reachable by A at the endmarkers, by all computation paths
starting from the initial configuration and traversing the input exactly t+1 times.
As a side effect of this counting, the algorithm generates all states reachable at
the endmarkers, and hence it can correctly decide whether to accept or reject
the given input.

For each accepted input, A has at least one accepting path that halts at
the left endmarker; furthermore, the input must also be accepted by a path
with no more than 2|Q| − 1 traversals. Otherwise, the machine A would repeat
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the same state on the same endmarker. For this reason, the loop running for
t = 0, . . . , 2|Q|−1 (nested between lines 2 and 14) suffices to detect an accepting
computation.

At the beginning of the t-th iteration of this loop, a variable m′ contains the
exact number of states reachable at the endmarkers by all computation paths
that traverse the input exactly t times. (Initially, in line 1, we prepare m′ = 1
for t = 0, the only state reachable by no traversals is the initial state q0.) In
line 3, we save the “old” value of m′ in the variable m, and clear m′ for counting
the number of states reachable upon completing one more traversal (i.e., with
exactly t+1 traversals). The value of m′ is computed in the loop nested between
lines 4 and 13, running for each state q′ ∈Q. For each q′, we test whether it is
reachable by a path with exactly t+1 traversals. If it is, we increment the value
of m′.

It is easy to see that: (i) if the input is accepted by A, at least one computation
path of A′ halts in the accepting state qyes, and no path halts in the rejecting
state qno, (ii) if the input is rejected, at least one path halts in qno, and no
path halts in qyes. (iii) Due to wrong sequences of nondeterministic guesses,
some computation paths halt in q? (don’t-know), but no path can get into an
infinite loop. The automaton A′ performs nondeterministic choices and input
head reversals at the endmarkers only, during the calls of simulation and reach.

Let us now quickly examine the “amount of information” required during
the computation, by considering the involved variables. Let n be the number of
states of A. The simulation procedure uses the variables m, m′, q, q′, qprev, and
i, each one ranging over at most n possible different values, and the variable t
with at most 2n different values. Furthermore, it can be shown that both the
subroutines simulation and reach can be implemented by introducing a single
variable containing one of at most 2n different values. All this information can
be accommodated in O(n8) states.

In conclusion, we get that any quasi-sweeping 2nfa with n states can be
replaced by an equivalent 2nfa that is quasi-sweeping, self-verifying, and halting,
with O(n8) states.

Using Theorem 4.1, we can make any unary 2nfa quasi-sweeping, which there-
fore allows us to simulate an arbitrary n–state unary 2nfa. However, the new
machine may disagree with the original one on “short” inputs, of length not
exceeding 5n2. This problem can be easily solved by adding an initial phase,
consisting of a single left-to-right traversal, followed by a single right-to-left
traversal, to accept or reject all inputs of length not exceeding 5n2. This can be
done deterministically, with O(n2) states. Hence

Theorem 4.2. Each n–state unary 2nfa A can be replaced by an equivalent
O(n8)–state halting qssvfa A′.

As pointed out in Section 2, by simply exchanging accepting with rejecting
states in the self-verifying A′ of Theorem 4.2, we get a machine for the comple-
ment of L(A′).



Complementing Two-Way Finite Automata 269

Corollary 4.3. For each n–state unary 2nfa A, there exists an O(n8)–state
2nfa A′ accepting the complement of L(A). Moreover, A′ is quasi-sweeping, self-
verifying, and halting.

5 Simulation by Unary Probabilistic Machines

Theorem 4.2 and Corollary 4.3 allow us to easily draw some further consequences.
In the case of unary two-way automata, the reduction of nondeterminism to self-
verifying nondeterminism can go down one more level, to Las Vegas probabilistic
automata, still with only an O(n8)–state penalty.

A two-way Las Vegas finite state automaton (2lvfa) [6] may be viewed as
a 2svfa equipped with some probabilistic transitions. If w ∈L(A), the machine
halts in some accepting state q ∈ F with a probability of at least 1/2, but the
probability of halting in a rejecting state q∈F r is zero. Conversely, for w �∈L(A),
the probability of halting in some rejecting state q ∈ F r is at least 1/2, but it
is zero for q∈F. Hence, a Las Vegas automaton never returns a wrong answer.
Moreover, the probability of a “don’t-know” answer is below 1/2.

For the size (the number of states) of one-way finite automata, a polynomial
relation between determinism and Las Vegas has been established [1], which
implies a superpolynomial gap between Las Vegas and nondeterminism. In the
case of two-way automata, we do not know whether there is a polynomial relation
between determinism and Las Vegas, or between Las Vegas and nondeterminism.
However in [6, Thm. 1] it is proved that each n–state 2svfa can be replaced by
an equivalent O(n)–state 2lvfa. Combining this result with Theorem 4.2, we get
that, in the case of unary two-way automata, even unrestricted nondeterminism
and Las Vegas are polynomially related:

Theorem 5.1. Each n–state unary 2nfa can be replaced by an equivalent O(n8)–
state 2lvfa.

This might give additional evidence that nondeterministic two-way automata,
when restricted to unary inputs, are not as powerful as they might seem at first
glance. Compare with Theorem 4 in [3], where a subexponential (though not
polynomial) simulation of unary 2nfa’s by 2dfa’s is presented, with a 2O(log2 n)–
state penalty.

6 Concluding Remarks

We have shown that, for deterministic two-way finite automata, the construction
of an automaton for the complement of the language accepted by the original ma-
chine requires only a linear increase in the number of states. For nondeterministic
two-way automata, when restricted to unary input alphabet, this relationship is
polynomial.

We were not able to resolve the problem of complement for 2nfa’s in the
general (nonunary) case. We conjecture that there is no polynomial complemen-
tation of 2nfa’s. However, proving this gap is a more complicated task than an
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argument resolving the Sakoda and Sipser open question [16] that asks whether
the simulation of 2nfa’s by 2dfa’s is polynomial in the number of states. It is
generally conjectured that the answer is negative, so we can formulate this open
problem as follows:

(a) Prove that there exists an exponential gap (or at least superpolynomial, in
the number of states) between nondeterministic and deterministic two-way
finite automata.

Now we present two open problems that are even more difficult:

(b) Prove that there exists an exponential, or at least superpolynomial, gap
between self-verifying and deterministic two-way finite automata.

(c) Prove that there exists an exponential, or at least superpolynomial, gap
between nondeterministic and self-verifying two-way finite automata.

Clearly, an argument for (b) would immediately prove (a), since a self-
verifying machine is also a nondeterministic machine. In this sense the prob-
lem (b) is more difficult to solve than (a).

The same holds for (c), since, by Corollary 3.4, we can make each 2dfa halt-
ing, with O(n) states. Then, by introducing an extra rejecting state qr

f (if the
original machine does not accept), we make the given deterministic machine
self-verifying. However, the problem (c) is equivalent to the following:

(d) Prove that there exists an exponential, or at least superpolynomial, gap
between 2nfa’s and 2nfa’s accepting the complement.

Suppose, in fact, that some p(n) states are sufficient to make an arbitrary
2nfa self-verifying. Then p(n) states are sufficient to build a machine for the com-
plement, by exchanging accepting with rejecting states in the 2svfa. Conversely,
if there exists a polynomial complementation of 2nfa’s, using p(n) states, then
n+p(n) states are sufficient to make an arbitrary 2nfa self-verifying. We simply
combine A1 and A2, the respective machines for the language and its comple-
ment, into a single machine. The set of accepting states of the new machine is
exactly the set of accepting states of A1, the set of its rejecting states exactly
the set of accepting states of A2. The new machine starts in q0,1, the initial state
of A1, however, it can switch to the initial state of A2 at the left endmarker, by
(q0,2, 0) ∈ δ(q0,1,&).

Thus, the problem (d) is equivalent to (c), and hence more complicated
than (a).

Finally, taking into account the upper bounds presented in Corollary 3.2 and
Theorem 3.3, the following open problem arises:

(e) Prove (or disprove) the existence of any gap between 2dfa’s and 2dfa’s ac-
cepting the complement.

By Corollary 3.2, it follows that a minimized 2dfa for the witness language (if it
exists) must reject some inputs by getting into an infinite loop.



Complementing Two-Way Finite Automata 271

Acknowledgments

The authors wish to thank anonymous referees for helpful comments and re-
marks.

References

1. Dietzelfelbinger M., KutylowskiM., ReischukR.: Exact lower bounds for computing
Boolean functions on CREW PRAMs. J. Comput. System Sci., 48 (1994) 231–54.

2. Geffert V.: Tally versions of the Savitch and Immerman-Szelepcsényi theorems for
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19. SzelepcsényiR.: The method of forced enumeration for nondeterministic automata.

Acta Inform., 26 (1988) 279–84.



On Timed Automata with Discrete Time –
Structural and Language Theoretical

Characterization

Hermann Gruber1, Markus Holzer1, Astrid Kiehn2, and Barbara König3,�

1 Institut für Informatik, Technische Universität München,
Boltzmannstraße 3, D-85748 Garching bei München, Germany

{gruberh,holzer}@in.tum.de
2 Department of Computer Science and Engineering,

Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
astrid@cse.iitd.ernet.in

3 Institut für Formale Methoden der Informatik, Universität Stuttgart,
Universitätsstraße 38, D-70569 Stuttgart, Germany

koenigba@fmi.uni-stuttgart.de

Abstract. We develop a structural and language theoretical character-
ization of timed languages over discrete time in terms of a variant of
Büchi automata and languages. The so-called tick automaton is a stan-
dard Büchi automaton with a special “clock-tick”-input symbol modeling
the discrete flow of time. Based on these characterizations we give an al-
ternative proof for the fact that the class of regular timed languages is
closed under complementation and formulate a time-warp lemma which,
similar to a pumping lemma, can be used to show that a timed language
is not regular. The characterizations hold alike for timed automata with
and without periodic clock constraints.

1 Introduction

Timed automata have been introduced in [1] in order to model real-time sys-
tems from a quantitative perspective, to make specification and verification of
models of real-time systems easier. A timed automaton is a Büchi automaton
with a finite set of clocks, which can be independently reset, and where the
automaton can keep track of the time elapsed since the last reset. Several gen-
eralizations have been investigated as, in particular, timed automata with silent
transitions [5] and timed automata with periodic clock constraints [6]. Both
these extensions are equally powerful and strictly increase the expressive power
of timed automata, regardless of the used time semantics, i.e., the interpretation
of the clocks, which assigns some value to each clock. The two major semantics
discussed in the literature are the discrete-time and the dense-time model. Al-
though the latter is more natural from a physical point of view and allows an
easy modelling of real-time systems, it requires decision methods for real-time
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logics, which in general are undecidable [2]. In fact, the class of timed languages
accepted by automata interpreted under the dense-time model is closed under
all positive Boolean operations, but is not closed under complementation [1].
The latter is also true for timed languages over discrete time, except for the
complementation closure, which was shown to hold in [9] in terms of a variant
of monadic second order logic.

However, as recently pointed out by Asarin [3], despite the availability of
tools such as Uppaal and Kronos, the foundations of the theory of timed
languages are comparatively weak compared to the classical theory of finite
automata and regular languages. For instance Asarin states in his open ques-
tion 3: “Give a simple and natural algebraic characterization of a known class
of timed languages – confirming that it is the correct class of languages.” With
the present paper we provide such a structural characterization for the class of
discrete-time languages accepted by timed automata with or without periodic
clock constraints (or equivalently with or without silent transitions). To this end
we transform timed automata into so-called tick automata. A tick automaton
is a Büchi automaton where the input alphabet is equipped with an additional
“clock-tick”-symbol (

√
) modelling the discrete flow of time1. Intuitively, actions

are occurring inbetween such clock ticks, hence, our time semantics is such that
it allows (finite or infinite) stuttering of actions on a particular time stamp dur-
ing the computation. It turns out that any tick automaton induced by a timed
automaton has a particular

√
-transition structure, namely deterministic tick-

paths ending in (trivial or non-trivial) tick-loops. On the other hand, we can
show that any tick automaton (not necessarily induced by a timed automaton)
can be converted into this normal form. This nicely corresponds to the intuitive
behaviour of time as a sort of deterministic or non-branching flow.

While timed automata in general induce non-trivial tick-loops, the tick-loops
become trivial for aperiodic timed automata. Besides this structural characteri-
zation of timed languages in terms of tick automata, we provide a language theo-
retical characterization for languages accepted by aperiodic timed automata by a
simple condition, which will be called

√
-stretchiness. This condition is closely re-

lated to the aperiodicity condition of regular languages on finite words. Loosely
speaking,

√
-stretchiness tells us that tick actions in direct sequence can only

be counted up to a given threshold, which depends on the language only. We
hope that these characterizations give some further insights into the behaviour
of timed languages.

The provided characterizations can be used to show an alternative way to
reprove the complementation closure of timed aperiodic languages, directly in the
framework of Büchi automata, thus reproving the result given in [9]. Moreover,
we develop a sort of pumping lemma, the so called time-warp lemma, which
shows that certain actions in a run of a word on the timed automaton can
be moved along the time axis to the future keeping the acceptance invariant.
To illustrate the strength of the time-warp lemma, we give very simple proofs
for languages that cannot be accepted by any timed (aperiodic) automaton. In

1 Note that our model of time is called the fictitious-clock model in [1]
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addition we mention that the time-warp lemma is not limited to the discrete time
semantics, but holds for dense-time semantics as well. Hence this is a (partial)
answer to open question 14 – “Develop simple techniques allowing to prove that
a given timed language is not regular” – stated in [3]. All presented results are
effectively constructible and therefore can be used for the verification of discrete
timed systems.

The paper is organized as follows: The next section contains preliminaries on
timed automata and timed languages. Section 3 introduces tick automata, and
shows how to transform timed automata to tick automata, by using the region
automata. The next section is devoted to the structural and language theoretical
characterization of timed languages in terms of tick automata. As a byproduct we
provide the reader with an alternative proof of the complementation problem of
timed languages, by automata theoretical constructions only. Then in Section 5
we develop the time-warp lemma and give some further applications. Finally we
summarize our results in Section 6.

2 Definitions

Timed automata can be considered as Büchi-automata which have been equipped
with a finite number of clocks. These clock run simultaneously and can individ-
ually be reset to 0 by a change of state, which in turn depends on the current
values of the clocks. Timed automata are usually interpreted under a dense time
domain, that is, a clock value can be any real number. This paper only considers
a discrete time semantics which assumes an underlying fictitious clock. For a
discussion of the different time models we refer to [1, 5, 6].

Many variations of timed automata can be found in the literature. The most
general form allows for silent (ε) transitions and as constraints any Boolean
expression over atomic assertions of the form x = c, x < c, and x =m c (compar-
ison modulo m), where x is a clock and c,m ∈ IN , or even direct comparisons of
different clock values. It has been shown in [1] that direct comparisons of clock
values provide an even more succinct representation, and in [5] and [6] that silent
transitions and modulo constraints are mutually expressible and do increase the
power of classical timed automata introduced in [1] (which coincide with ape-
riodic timed automata in our setting). To keep the technical presentation as
simple as possible we use the results of [6, 7] and assume just one clock and a
restricted constraint language. Every timed automaton can effectively brought
into this form though its size might increase substantially.

Definition 1. A timed automaton A = 〈Z,Σ,E, zS, R, {x}〉 is given by a finite
set of states Z, the input alphabet Σ, a start state zS ∈ Z, an acceptance set R ⊆
Z, one clock variable x and the set of transitions E ⊆ Z ×Σ × 2Φ × 2{x} × Z,
where Φ = {x = i, x �= i, x =m i, x �=m i | 0 ≤ i < m} and m ∈ IN . An aperiodic
timed automaton differs only in the constraint universe Φ = {x = i, x �= i, x ≥
m | 0 ≤ i < m}.

We will sometimes use the term periodic timed automaton in order to distin-
guish timed automata from aperiodic timed automata.
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We denote 〈z, a, ϕ,X, z′〉 ∈ E by z
a,ϕ,X−→ z′, where ϕ is called the constraint set

(or simply constraint) and X the reset set. A configuration 〈z, v〉 of A consists of
a state and a clock assignment. As we consider just one clock, a clock assignment
reduces to an integer v ∈ IN . A timed run on a timed automaton is an infinite
sequence

π = 〈z0, v0〉
a1,t1−→ 〈z1, v1〉

a2,t2−→ 〈z2, v2〉
a3,t3−→ · · · ,

where z0 = zS , ai ∈ Σ and ti ∈ IN such that v0 = 0 and for each i ≥ 0

there is an underlying transition zi
ai+1,ϕ,X−→ zi+1 with (a) vi + Δi |= ϕ and (b)

vi+1 = vi + Δi, if X = ∅, and vi+1 = 0, if X = {x}, where Δi := ti+1 − ti and
t0 = 0, with Δi ≥ 0. Condition (a) expresses that the guarding constraint ϕ
is satisfied before the transition is taken, while (b) ensures that the clock is
adjusted correctly. A clock assignment satisfies a set of constraints if it satisfies
every constraint contained in the set.

A timed run π is called accepting if Inf (π) ∩ R �= ∅, where Inf (π) denotes
the set of states occurring infinitely often in π. From a timed run π we extract
the timed word w(π) = 〈a1, t1〉〈a2, t2〉〈a3, t3〉 . . . ∈ (Σ × IN)ω, which, as usual,
is the constituent of the timed language of A:

Lω(A) = {w(π) ∈ (Σ × IN)ω | π is an accepting run on A }.

Note, that by definition the time stamp sequence is monotonously increasing.
Moreover, we diverge from the literature in that we do not demand non-zenoness,
that is, each run indeed diverges in time. By doing so, we simplify the construc-
tions to come. As shown in [5], non-zenoness can be enforced by an additional
automata theoretical construction.

3 From Timed Automata to Tick Automata

The fictitious clock semantics suggests another way of behaviour description:
rather than equipping an event with the current clock time, the ticking of the
clock can be modeled by a particular tick-action,

√
. For instance, the finite

timed word 〈a, 1〉〈b, 3〉〈a, 3〉〈a, 7〉 corresponds to
√

a
√√

ba
√√√√

a. We call the
latter representation the ticked-version of the former.

Definition 2. Let w = 〈a1, t1〉〈a2, t2〉 . . . 〈ai, ti〉 . . . be a timed word. Its ticked
version is w√ =

√Δ0a1
√Δ1a2 . . . ai−1

√Δi−1ai . . . with Δi = ti+1−ti and t0 = 0.
Let untick(w√) = w be the inverse operation. Then the ticked version of a timed
language L is defined as L√ := {w√ ∈ (Σ + {√})ω | untick(w√) ∈ L }, where +
denotes the disjoint union of sets.

We show in this section that every (discrete) timed automaton A can be repre-
sented as a Büchi-automaton with a distinguished

√
-action such that (Lω(A))√

coincides with the ω-language of the Büchi automaton. We denote this Büchi au-
tomaton by A√ and call it the tick automaton of A. In general, a tick automaton
is a Büchi automaton with a new action

√
representing a tick of an underlying
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fictitious clock. A tick automaton B is given by 〈Z,Σ + {√}, E, zS , R〉, where
Z, Σ, zS and R are interpreted as in the case of timed automata but E sim-
plifies to E ⊆ Z × Σ + {√} × Z. A word w is in the accepted language Lω(B)
if (1) the word w contains infinitely many non-

√
actions and (2) the underlying

run of w contains infinitely many occurrences of acceptance states (the usual
Büchi acceptance condition). Note that condition (1) and (2) give an adequate
counterpart to languages accepted by timed automata. Since we do not require
non-zenoness there, we do not demand infinitely many

√
-actions occurring in w

as acceptance condition.
To express the timed behaviour of an automaton as a tick automaton we use

the concept of regions which have been introduced in [1] in order to describe
the untimed behaviour of a timed automaton. A region equates all those clock
valuations which are undistinguishable under progress of time or clock resetting
with respect to the evaluation of constraints, i.e., a region is an equivalence class.

As we deal with one clock x only, the regions are simply described by the
region expressions x = i and x ≥ m ∧ x =m i, for 0 ≤ i < m, and in case of
aperiodic timed automata by x = i and x ≥ m, for 0 ≤ i < m, where m is the
constant in the definition of an automaton. Note that in both cases, the clock
regions provide a partition on the time domain IN . Two clock valuations v and v′

are equivalent, v ∼ v′, if they satisfy the same region expression. The following
lemma ensures soundness of our construction.

Lemma 3. Let v and v′ be clock valuations with v ∼ v′. Then

1. v |= ϕ if and only if v′ |= ϕ for any clock constraint ϕ occurring in A, and
2. (v + Δ) ∼ (v′ + Δ) for any Δ ∈ IN .

For the tick automaton A√ we pair the states of A with its regions. The
transitions are induced by the transitions of A which are now split into a delay
and an action part.

Definition 4 (Automaton A√). Let A = 〈Z,Σ,E, zS, R, {x}〉 be a timed au-
tomaton. Then A√ is the tick automaton 〈Z ′, Σ +{√}, E′, z′S , R′〉, where the set
of states is Z ′ = { 〈z, α〉 | z ∈ Z, α a region expression }, the initial state equals
z′S = 〈zS , x = 0〉, R′ = { 〈z, α〉 | z ∈ R } and E′ contains

1. 〈z, α〉 a−→ 〈z′, α〉 if there is z
a,ϕ,∅−→ z′ in A such that α |= ϕ (non-reset

transitions),

2. 〈z, α〉 a−→ 〈z′, x = 0〉 in A√ if there is z
a,ϕ,{x}−→ z′ in A such that α |= ϕ

(reset transitions),

3. 〈z, α〉
√
−→ 〈z, α + 1〉 for all states 〈z, α〉 ∈ Z ′ (tick transitions).

Observe that the non-reset and reset transitions are executed without any
delay. The delay that might be necessary in A to move from state z to z′ is
performed in A√ by the respective number of

√
-transitions. These transitions

lead to the immediate time successor of the current region but do not leave
state z. A time successor α+k of a region expression α is defined by α+k = [v+k]
for α = [v].
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Theorem 5. Let A be a timed automaton. Then

(Lω(A))√ = Lω(A√) ∩ {w ∈ (Σ + {√})ω | w contains infinitely many a ∈ Σ }.

The size of A√ is determined by the number of states and transitions. The
number of states of A√ is |Z ′| = |Z| × (number of regions). We have |Z ′| =
|Z| · 2m for the case of periodic clock constraints, and |Z ′| = |Z| · (m + 1) for
automata using only aperiodic constraints. The number of transitions is bound
by |E| · (m + 1) + |Z| · (m + 1) = (|E|+ |Z|)(m + 1) for the aperiodic case, and
by |E| · 2m + |Z| · 2m = (|E|+ |Z|) · 2m in general.

Example 6. Figure 1 shows an aperiodic timed automaton with accepted lan-
guage

L1 = { 〈ai, ti〉i≥1 | ∃k ≥ 0 : (∀i < k : ai = a ∧ ti = 2i)
∧ (ak = b ∧ tk > 2k) ∧ (∀j > k : aj = a) }.

Its tick automaton is also given in Figure 1, where α0 = (x = 0), α1 = (x = 1),
α2 = (x = 2), and β = (x ≥ 3) are the region expressions.

1

2

a, (x = 2), {x}

b, (x ≥ 3), ∅

a, true, {x}

〈1, α0〉 〈1, α1〉 〈1, α2〉 〈1, β〉

〈2, α0〉 〈2, α1〉 〈2, α2〉 〈2, β〉

√ √ √
√

a

b

a

√ √ √
√

a

a

a

Fig. 1. A timed automaton with aperiodic clock constraints (Example 6) and its cor-
responding tick automaton

We now have a closer look at the structure of the tick automaton A√. It
follows immediately from the definition that there is no branching with respect
to tick-transitions. For aperiodic automata we can additionally observe that
there are no non-trivial cycles in which the transitions are labelled by

√
only,

while in arbitrary timed automata the length of tick-cycles is m, where m is the
constant of the modulo constraints. Formally, these properties read as follows:

1. Tick determinism: z
√
−→ z′ and z

√
−→ z′′ imply z′ = z′′.

2. Tick-cycle freedom: z1

√
−→ z2

√
−→ · · ·

√
−→ zn and z1 �= z2 imply z1 �= zn.
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3. Constant tick-cycle length: z1

√
−→ · · ·

√
−→ zn

√
−→ z1 and z1, . . . , zn are pair-

wise distinct implies n = m where m is the constant given in the constraint
universe of periodic timed automata.

Note that a tick-loop, i.e., a transition z
√
−→ z, does not count as a tick-cycle.

Theorem 7. Let A be a timed automaton and A√ its corresponding tick au-
tomaton. Then the following implications hold:

1. If A is aperiodic then A√ is tick-deterministic and tick-cycle free, and
2. if A is periodic then A√ is tick-deterministic and has a constant tick-cycle

length.

The converse of the theorem given above is shown in Section 4 on struc-
tural characterizations. Observe that for timed languages in general, due to the
correspondence of ε-transitions and modulo constraints [6], there is an easy con-
struction that transforms an arbitrary tick automaton into an equivalent timed

automaton. We introduce a new clock x, replace each tick transition z
√
−→ z′ in

the tick automaton by an ε-transition z
ε,x=1,{x}−−−→ z′ and then use the fact that

timed automata with silent actions can be transformed into equivalent ε-free
timed automata with modulo constraints. In passing we have hence shown the
following corollary:

Corollary 8. For each tick automaton A there is a periodic timed automaton B
such that Lω(A) = (Lω(B))√.

4 Characterizations of Aperiodic Timed Languages

In this section we develop a structural and language theoretical characterization
of aperiodic timed languages in terms of tick automata and languages, respec-
tively. An application of both characterizations to the complementation problem
is given in Subsection 4.3.

4.1 Structural Characterization of Aperiodic Timed Languages

We give a structural characterization of timed languages accepted by aperiodic
timed automata. We state first that every tick-cycle free aperiodic tick automa-
ton can be made tick-deterministic.

Lemma 9. Each tick-cycle free tick automaton A can be effectively transformed
into a tick automaton B such that Lω(A) = Lω(B) and B is tick-deterministic
and tick-cycle free.

For a tick-deterministic tick automaton A, which is tick-cycle free, it is now
straightforward to define a timed automaton B with one clock x such that
(Lω(B))√ = Lω(A). Here B contains the set of states of A. For each path
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z
a−→ z0

√
−→ · · ·

√
−→ zn

b−→ zn+1 where a and b are non-
√

actions, we ei-

ther introduce a transition z0
b,x=n,{x}−−−→ zn+1 if there is no tick loop at zn or

z0
b,x≥n,{x}−−−→ zn+1 in the presence of such a loop. For the initial state zS we

proceed similarly. Furthermore we introduce appropriate acceptance states and
convert the constraints into the form of Definition 1. Hence we can give the
following structural characterization of aperiodic timed languages.

Theorem 10. A tick automaton A is language equivalent to a tick-deterministic
and tick-cycle free tick automaton if and only if there is an aperiodic timed
automaton B such that Lω(A) = (Lω(B))√.

4.2 Language Theoretical Characterization
of Aperiodic Timed Languages

We give a language theoretical characterization of timed language accepted by
aperiodic timed automata. To be more precise, we define a condition, which holds
exactly for all languages which are tick versions of aperiodic timed languages and
vice versa. The condition reads as follows:

Definition 11 (
√

-stretchy). A language L ⊆ (Σ +{√})ω is called
√

-stretchy
if and only if there exists an n ∈ IN such that (1) for each infinite sequence
w1, w2, w3, . . . of finite words over the alphabet Σ + {√} and for each infinite
sequence i1, i2, i3, . . . of nonnegative numbers

w1
√n

w2
√n

w3
√n

. . . ∈ L ⇐⇒ w1
√n+i1w2

√n+i2w3
√n+i3 . . . ∈ L

and (2) for every w ∈ (Σ + {√})∗, v ∈ (Σ + {√})ω and each nonnegative
number i,

w
√n

v ∈ L ⇐⇒ w
√n+i

v ∈ L.

The following lemma immediately follows by definition.

Lemma 12. A language L ⊆ (Σ + {√})ω is
√

-stretchy if and only if the com-
plement of L, i.e., the language (Σ + {√})ω \ L, is

√
-stretchy.

Moreover, it is not hard to see that every language accepted by a tick au-
tomaton A√, where A is aperiodic, is

√
-stretchy. This is due to the fact, that

whenever A√ has read a block of
√

which is long enough it must be in a state,
which corresponds to the maximal clock region. Since this state must have a
tick-loop, one can enlarge the

√
-block by an arbitrary number of

√
’s without

changing the acceptance of the original word. Thus, the
√

-stretchy condition is
satisfied for n = m+ 1, where m is the maximal constant occurring in the set of
clock constraints of the timed aperiodic automaton A. In terms of A√, one can
choose the number of its states as a suitable n.

Before we prove the converse relation, i.e., that every
√

-stretchy ω-regular
language over the alphabet Σ + {√} accepted by a tick automaton A√ corre-
sponds to an aperiodic timed language, we need the following technical lemma.
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Lemma 13. Let L ⊆ (Σ ∪ {√})ω be a
√

-stretchy language accepted by a tick
automaton A. Then a tick automaton B can be effectively constructed from A
such that Lω(B) = L and B is tick-cycle free.

Proof. Let n be the constant from the
√

-stretchy condition, which is satisfied
by L. It suffices to show that every non-trivial strongly connected component of√

-transitions can be eliminated from the tick automaton A, without changing
the accepted language.

Fix one non-trivial strongly connected component of
√

-transitions and let S
be the set of all states contained within this component. Without loss of gen-
erality we may assume that there is no a-transition leading from z to z′ with
z, z′ ∈ S. Define Rs,s′ be the set of all words representing a path from s to s′,
which lies completely within S. Observe that Rs,s′ is regular for every s, s′ ∈ S.
Then for every s, s′ ∈ S such that s has an in-going non-

√
transition and s′ an

outgoing a-transition to a state t, which is not contained in S, we proceed in
three steps: (1) Introduce a new edge from s to t labeled with the regular ex-
pressions: (i) All expressions of the form wa with w ∈ Rs,s′ and |w| < n and (ii)√n√∗a. (2) If there is an accepting state s′′ ∈ S, then introduce a new accepting
state t′, which is appropriately connected to all successors of t, and introduce a
new edge from s to t′ labeled with the regular expressions: (i) All expressions of
the form wa with w ∈ Rs,s′′Rs′′,s′ and |w| < n and (ii)

√n√∗a. (3) Finally, one
removes all

√
-transitions, which were once part of the strongly connected cycle,

and converts the regular expression on the newly introduced edges to paths,
the structure of which contains no non-trivial tick cycles. This completes the
description of the construction. It remains to verify the correctness.

Consider step (1) in more detail. The only way to eventually accept a word w,
which is not in the language is to use a word from the expression

√n√∗
a go-

ing from s to t via s′. Then we distinguish two cases: The new edge is tra-
versed infinitely or finitely often. We only prove the former case, since the latter
can be shown by similar arguments. Now assume that the edge under consid-
eration is traversed infinitely often and w = w1

√n+c1aw2
√n+c2aw3

√n+c3 . . .
where the substrings of the form

√n+cia, for ci ≥ 0, are due to the new edge.
Then we distinguish two cases: If w1

√n
aw2

√n
aw3

√n
. . . is in L, then so is w.

Otherwise, assume that w1
√naw2

√naw3
√n . . . is not a member of L, but w

is accepted by the new machine. Then instead of using the newly introduced
edge, we alter the computation such that one particular path from s to t via s′′

within the strongly connected cycle is taken. Thus, we end up with a word
w′ = w1

√n+c
aw2

√n+c
aw3

√n+c
. . . for some constant c, which is also accepted

by the original Büchi automaton, and hence lies in L – the accepting states that
were seen infinitely often in the run of w do not belong to S \ {s}. Then we
immediately obtain a contradiction, because by the

√
-stretchy condition also

the word w1
√naw2

√naw3
√n . . . has to be accepted, which was ruled out by our

assumption. Thus, step (1) does not alter the accepted language.
Furthermore, when removing the

√
-transitions that were once part of the

strongly connected component in step (3), we have to consider computations
that visit a possible acceptance state belonging to S. This is done in step (2).
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By a similar reasoning as above one observes that the newly introduced edge
together with the acceptance state t′ does not alter the underlying language.
Moreover, the same holds for step (3), where the

√
-transitions that were part

of the strongly connected component are deleted. Thus, Lω(B) = Lω(A). ��

Finally, we state the main result of this section, which is an immediate con-
sequence of our previous considerations.

Theorem 14. A language L ⊆ (Σ+{√})ω is a
√

-stretchy language accepted by
a tick automaton if and only if the language untick(L) is accepted by an aperiodic
timed automaton, where untick(L) := { untick(w√) | w√ ∈ L }.

4.3 Application to Complementation

We show that the (discrete) languages obtained from timed automata are closed
under complementation, thus reproving Wilke’s result [9] by automata theo-
retical constructions only – observe that the complementation of timed lan-
guages is done with respect to timed words, where the time stamp sequence is
monotonously increasing.

Theorem 15. The classes of languages obtained from timed automata and ape-
riodic timed automata are closed under complementation.

Proof. In the aperiodic case convert a timed automaton into a tick automaton
according to the algorithm given in the previous section. Then we complement
the Büchi automaton with any complementation algorithm (for instance the
one described in [8]). This results in a tick automaton (with n states), where
Lemma 13 can be applied, resulting in a Büchi automaton which is tick-cycle
free. Finally, applying the conversion for a tick-deterministic and tick-cycle free
Büchi automaton into an aperiodic timed automaton solves the complementation
problem via our structural characterization. Observe that all steps are effectively
constructible since the constant for the

√
-stretchy condition can be estimated

by the size of the automaton (which is n in our case).
In the periodic case the proof is analogous and even simpler since it does not

require Lemma 13. ��

5 Time-Warp of Timed Languages

Based on our language theoretical characterization of timed languages we show
that certain actions in a timed word can be “time-warped,” i.e., all time stamps
are shifted by a common distance to the future along the time axis. This leads
us to the time-warp lemma, which is similar in flavour to a pumping lemma,
and thus allows us to identify certain languages as not acceptable by any timed
automaton – compare with the pumping lemmata of [4].

Before we introduce the time-warp lemma we need some more notations
in order to simplify the presentation. For a timed word w = 〈a1, t1〉〈a2, t2〉 . . .
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〈ai, ti〉 . . . define its Δ-timed representation as wΔ = 〈a1, Δ1〉〈a2, Δ2〉 . . .
〈ai, Δi〉 . . ., where Δi = ti − ti−1 with t0 = 0. Then the Δ-version of the timed
language L is defined as LΔ = {wΔ ∈ (Σ × IN)ω | w ∈ L }. Now we are ready
for the time-warp lemma, the proof of which immediately follows from the given
characterizations of languages accepted by timed and aperiodic timed automata
in Corollary 8 and Theorem 10. Thus we omit the proof.

Lemma 16 (Time-warp lemma2). Let L be a the language accepted by an
aperiodic timed automaton. Then there exists a constant n, such that for every
word wΔ = 〈ai, Δi〉i≥1, every index set J ⊆ { i ∈ IN | Δi ≥ n }, and for every
function f : J → IN we have wΔ ∈ LΔ if and only if time-warpJ,f (wΔ) ∈
LΔ, where time-warpJ,f(wΔ) is defined to be the Δ-timed word 〈ai, Δ

′
i〉i≥1 with

Δ′
i = Δi + f(i), if i ∈ J , and Δ′

i = Δi otherwise. The statement remains
valid in case L is a language accepted by a periodic timed automaton in general,
provided that the all quantified functions f : J → IN obey the additional property
range(f) ⊆ { kn | k ≥ 0}.

With the time-warp lemma we can prove that certain languages are not ac-
ceptable by any timed automaton. For instance, consider the language of “conver-
gent response time,” which is defined as follows – the language is taken from [1]:

L = { 〈ai, ti〉i≥1 | ∀i ≥ 1 : a2i−1 = a ∧ a2i = b

∧ ∃c ≥ 0 : ∃i ≥ 1 : ∀j > i : t2j < t2j−1 + c }.

We show that L is not acceptable by any timed automaton. Assume to the
contrary that the language L is accepted by some timed automaton A. Then
let n be the constant mentioned in Lemma 16. Now consider the Δ-timed word
wΔ = 〈a, 1〉〈b, n〉〈a, 1〉〈b, n〉〈a, 1〉〈b, n〉 . . ., which obviously is in LΔ. Let J =
{ 2i | i ≥ 1 } and define the function f : IN → IN by f(i) = i · n. But then
time-warpJ,f (wΔ) is not an element of the Δ-representation of the language
under consideration, since the response times clearly diverge for the warped
word. Thus, language L is not acceptable by any (aperiodic) timed automaton.

For practical purposes it would be nice if at least the complement of L is
acceptable by a timed automaton, as this would be enough to do timed model
checking. Unfortunately, this is not the case as the closure under complementa-
tion and the following (stronger) theorem show.

Theorem 17. Let L ⊆ (Σ × IN)ω be a non-empty timed language such that
L ⊆ D, where language D is implicitly defined via its Δ-representation, which
is DΔ = { 〈ai, Δi〉i≥1 | ∀c ≥ 0 : ∃i ≥ 1 : Δi > c }. Then L is not acceptable by
any timed automaton.

Finally, we come back to the language L of convergent response time. Obvi-
ously, language L can be parameterized according to the response time c. This
2 It is worth mentioning, that the time-warp lemma generalizes to dense time se-

mantics, i.e., real valued clocks. Note that the statements in the remaining part of
this section are also valid for the dense time semantics, although in the results and
arguments discrete time is used, only



On Timed Automata with Discrete Time 283

leads us to languages Lc, for c ≥ 0, which are appropriately defined. In [1] it
was shown that these languages are acceptable by deterministic timed Muller
automata – for a formal definition of timed Muller automata we refer to [1] –
and moreover it was conjectured that these languages are not acceptable by any
deterministic timed (Büchi) automaton. The theorem given below solves this
conjecture.

Theorem 18. Let c ≥ 2. Then the timed language Lc of constant response
time c is not acceptable by any deterministic timed automaton.

6 Conclusions

We have given structural and language theoretical characterizations for regu-
lar discrete timed languages, in the periodic as well as in the aperiodic case
by means of introducing so-called tick automata and tick languages. The char-
acterizations have several applications and furthermore we have developed the
time-warp lemma, a tool very similar to a pumping lemma which can be con-
veniently used in order to show that certain languages can not be accepted by
(aperiodic) timed automata. We hope that these results contribute to a more
basic theory for timed languages as envisioned in [3].
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Abstract. It is known that for monotone deterministic one-way restart-
ing automata, the use of auxiliary symbols does not increase the expres-
sive power. Here we show that the same is true for deterministic two-way
restarting automata that are right- or left-monotone. Actually in these
cases it suffices to admit delete operations instead of the more general
rewrite operations. In addition, we characterize the classes of languages
that are accepted by these types of two-way restarting automata by cer-
tain combinations of deterministic pushdown automata and deterministic
transducers.

1 Introduction

The original motivation for introducing the restarting automaton in [5] was
the desire to model the so-called analysis by reduction of natural languages. In
fact, many aspects of the work on restarting automata are motivated by the
basic tasks of computational linguistics. The notions developed in the study of
restarting automata give a rich taxonomy of constraints for various models of
analysers and parsers. There are already several programs that are being used in
Czech and German (corpus) linguistics that are based on the idea of restarting
automata (cf., e.g., [9, 13]).

A (two-way) restarting automaton, RLWW-automaton for short, is a device
M with a finite-state control, a flexible tape, and a read/write window of a fixed
size. This window moves along the tape which contains a word delimited by
sentinels executing move-right and move-left instructions until its control decides
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(nondeterministically) that the content of the window should be rewritten by
some shorter string, in this way shortening the tape. In general, the new string
may contain some auxiliary (that is, non-input) symbols. After a rewrite, M
can continue to move its window until it either halts and accepts, or halts and
rejects, or restarts, that is, it places its window over the left end of the tape,
and reenters the initial state, in this way reaching a ‘restarting configuration.’
Each part of a computation of M between an initial configuration or a restarting
configuration and the next restarting configuration is called a ‘cycle.’ Thus, each
computation of M can be described through a sequence of cycles. In fact, M
cannot only be considered as a device for accepting a language, but it can also
be interpreted as a ‘rewriting system,’ as each cycle replaces a factor of its initial
tape content by a shorter factor, in this way performing a rewrite of the tape
content.

Also various restricted versions of the restarting automaton have been con-
sidered. The one-way restarting automaton, RRWW-automaton for short, does
not have any move-left instructions, and the RWW-automaton is an RRWW-
automaton that is in addition required to perform a restart step immediately
after executing a rewrite operation. Furthermore, the deterministic variants of
all these types of restarting automata have been considered, and a monotonicity
property was introduced for restarting automata. It is based on the idea that
from one cycle to the next in a computation, the actual place where a rewriting
is performed does not increase its distance from the right end of the tape. The
(right-) monotone restarting automata essentially model bottom-up one-pass
parsers. Monotonicity conditions are of interest as monotone reductions play a
significant role in the syntax of natural languages [6].

Finally, in [14] the notion of left-monotonicity was considered. This is based
on the idea that from one cycle to the next in a computation, the actual place
where a rewriting is performed does not increase its distance from the left end of
the tape. Although the notions of monotonicity and left-monotonicity seem to be
symmetric to each other, it turned out that for deterministic one-way restarting
automata, these notions lead to completely different forms of behaviour. This
stems from the fact that a restarting automaton starts each cycle of a com-
putation at the left end of the tape. Hence, a monotone computation proceeds
similarly to that of a pushdown automaton, while a left-monotone computation
essentially processes the given input from right to left, rescanning the still to
be processed prefix of the tape content in each cycle. For two-way restarting
automata, however, the notions of left-monotonicity and of right-monotonicity
are in fact symmetric.

While for nondeterministic restarting automata each two-way variant is just
as powerful as the corresponding one-way variant [12, 14], the ability to move
the window in both directions does increase the power of deterministic restarting
automata. In particular, there exist monotone deterministic two-way restarting
automata (even without auxiliary symbols) that accept languages that are not
deterministic context-free [12], while it is known that all the different types of
monotone deterministic one-way restarting automata accept the same class of
languages, the class DCFL of deterministic context-free languages [6].
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Here we investigate the expressive power of (right- and left-) monotone deter-
ministic two-way restarting automata in more detail. After restating the basic
definitions in Section 2, we will show in Section 3 that right- as well as left-
monotone deterministic two-way restarting automata with auxiliary symbols are
not more expressive than right- or left-monotone deterministic two-way restart-
ing automata, respectively, that can only perform delete operations instead of
general rewrite operations. The proof of this result entails a characterization
of the class of languages that are accepted by left-monotone deterministic two-
way restarting automata in terms of a combination of deterministic transducers
and deterministic pushdown automata. In Section 4 we discuss some possible
consequences and extentions of our results.

2 Definitions and Notation

For an alphabet Δ, we denote by Δ+ the set of non-empty words over Δ, while
Δ∗ denotes the set of all words over Δ including the empty word, which we
denote by λ. For a word x, |x| denotes the length of x, and for an integer i ≥ 0,
Δ≤i := { x ∈ Δ∗ | |x| ≤ i }. By xR we denote the reversal of x, for a language L,
LR := { xR | x ∈ L }, and for a class of languages C, CR := {LR | L ∈ C }.
Finally, for a word x and an integer i, where 1 ≤ i ≤ |x|, x[i] denotes the i-th
letter of x.

If Δ1, . . . , Δd (d > 1) are alphabets, then Δ := Δ1×Δ2×. . .×Δd denotes the
alphabet that is obtained as the cartesian product of these alphabets. If xi ∈ Δn

i

(1 ≤ i ≤ d) are words of equal length n ≥ 0, then (x1, . . . , xd) will denote
the word w from Δn that satisfies w[i] = (x1[i], . . . , xd[i]) for all i = 1, . . . , n.
Further, by πi (1 ≤ i ≤ d) we denote the projection πi : Δ→ Δi that maps each
letter onto its i-th component. Clearly πi yields a morphism from Δ∗ onto Δ∗

i .
Next we describe the type of restarting automaton we will be dealing with.

We only give an informal description. The technical details can be found in [10].
A two-way restarting automaton, RLWW-automaton for short, is a nonde-

terministic machine M with a finite-state control Q, a flexible tape, and a
read/write window of a fixed size k ≥ 1. The work space is limited by the
left sentinel c and the right sentinel $, which cannot be removed from the tape.
In addition to the input alphabet Σ, the tape alphabet Γ of M may contain a
finite number of so-called auxiliary symbols. The behaviour of M is decribed by
a transition relation δ that associates to a pair (q, u) consisting of a state q and
a possible content u of the read/write window a finite set of possible transition
steps. There are five types of transition steps:

1. A move-right step (MVR) causes M to shift the read/write window one po-
sition to the right and to change the state. However, the read/write window
cannot move across the right sentinel $.

2. A move-left step (MVL) causes M to shift the read/write window one position
to the left and to change the state. However, the read/write window cannot
move across the left sentinel c.
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3. A rewrite step causes M to replace the content u of the read/write window
by a shorter string v, thereby shortening the tape, and to change the state.
Further, the read/write window is placed immediately to the right of the
string v.

4. A restart step causes M to place its read/write window over the left end of
the tape, so that the first symbol it sees is the left sentinel c, and to reenter
the initial state q0.

5. An accept step causes M to halt and accept.

If δ(q, u) = ∅ for some pair (q, u), then M necessarily halts, and we say that
M rejects in this situation.

A configuration of M is a string αqβ where q is a state, and either α = λ
and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents the
current state, αβ is the current content of the tape, and it is understood that the
window contains the first k symbols of β or all of β when |β| ≤ k. A restarting
configuration is of the form q0cw$, where q0 is the initial state and w ∈ Γ ∗;
if w ∈ Σ∗, then q0cw$ is an initial configuration. Thus, initial configurations
are a particular type of restarting configurations. By &M we denote the single-
step computation relation that M induces on the set of configurations, and &∗M
denotes the resulting computation relation.

In general, the automaton M is nondeterministic, that is, there can be two
or more instructions with the same left-hand side (q, u). If this is not the case,
the automaton is deterministic.

We observe that any finite computation of a two-way restarting automa-
ton M consists of certain phases. A phase, called a cycle, starts in a restarting
configuration, the window moves along the tape performing MVR, MVL, and
rewrite operations until a restart operation is performed and thus a new restart-
ing configuration is reached. If no further restart operation is performed, any
finite computation necessarily finishes in a halting configuration – such a phase
is called a tail. We require that M performs exactly one rewrite operation during
any cycle – thus each new phase starts on a shorter word than the previous one.
During a tail at most one rewrite operation may be executed.

An input word w ∈ Σ∗ is accepted by M , if there is a computation which,
starting with the initial configuration q0cw$, finishes by executing an accept
instruction. By L(M) we denote the language consisting of all words accepted
by M ; we say that M recognizes (accepts) the language L(M).

Now we define those subclasses of RLWW-automata that are relevant for our
investigation. An RRWW-automaton is an RLWW-automaton which does not
use any MVL instructions. An RWW-automaton is an RRWW-automaton which
restarts immediately after rewriting, that is, for such an automaton each rewrite
transition is immediately followed by a restart transition. An RLW-automaton is
an RLWW automaton which does not use auxiliary symbols. An RL-automaton is
an RLW-automaton whose rewrite instructions can be viewed as deletions, that
is, if (q′, v) ∈ δ(q, u), then v is a (scattered) subword of u. Analogously, RRW-
and RR-automata are obtained from RRWW-automata and RW- and R-automata
from RWW-automata. We use the prefix det- to denote classes of deterministic
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restarting automata. Further, for each type X of automata, we denote the class
of languages that are accepted by automata from that class by L(X).

Next we turn to the various notions of monotonicity for restarting automata.
The computation of a restarting automaton proceeds in cycles, where each cycle
contains exactly one rewrite step. Thus, each cycle C contains a unique configu-
ration αqβ in which a rewrite instruction is applied. The number |β| is called the
right distance of C, denoted by Dr(C), and |α| is the left distance of C, denoted
by Dl(C).

A sequence of cycles S = (C1, C2, · · · , Cn) is called (right-) monotone if
Dr(C1) ≥ Dr(C2) ≥ . . . ≥ Dr(Cn), and that it is called left-monotone if
Dl(C1) ≥ Dl(C2) ≥ . . . ≥ Dl(Cn). A computation is (right-) monotone or
left-monotone, respectively, if the corresponding sequence of cycles is (right-)
monotone or left-monotone. Observe that the tail of the computation does not
play any role here. Finally, a restarting automaton M is called (right-) mono-
tone or left-monotone, respectively, if all its computations that begin with an
initial configuration are (right-) monotone or left-monotone. The prefixes mon-
and left-mon- are used to indicate the various classes of right- and left-monotone
restarting automata. Right-monotonicity of restarting automata is decidable [4],
and it can be shown analogously that left-monotonicity is decidable.

Theorem 1. [6, 12]

(a) CFL = L(mon-RWW) = L(mon-RRWW) = L(mon-RLWW).
(b) DCFL = L(det-mon-R) = L(det-mon-RRWW) � L(det-mon-RLWW).

The notion of left-monotonicity for restarting automata has been introduced
only recently. Here the following results are known.

Theorem 2. [7, 14]

(a) CFL = L(left-mon-R(R)WW) = L(left-mon-RLWW).

(b) DCFLR � L(det-left-mon-R(R)WW) = L(det-left-mon-RLWW).

Unlike for one-way restarting automata, the notions of left-monotonicity
and (right)-monotonicity are completely symmetric for deterministic two-way
restarting automata.

Lemma 1. For each X ∈ {λ, W, WW},
L(det-left-mon-RLX) = (L(det-mon-RLX))R.

Proof. We only prove the inclusion from left to right, the other one being
symmetric. Let L ∈ L(det-left-mon-RLX), and let M be a det-left-mon-RLX-
automaton for the language L. We have to verify that LR ∈ L(det-mon-RLX).
Based on M we construct a det-mon-RLX-automaton M ′ for the language LR.
Given an input word x, M ′ simulates the computation of M on input xR cycle by
cycle. In each cycle M ′ first moves its read/write window to the right delimiter,
then it enters the initial state of M and simulates M step by step, replacing MVR
steps by MVL steps and vice versa. It follows that M ′ accepts the language LR,
and that M ′ is monotone, if M is left-monotone. �
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3 Right- and Left-Monotone Deterministic RL-Automata

In this section we derive our main result stating that right- and left-monotone
deterministic two-way restarting automata don’t need auxiliary symbols.

Theorem 3.

(a) L(det-mon-RLWW) = L(det-mon-RLW) = L(det-mon-RL).
(b) L(det-left-mon-RLWW) = L(det-left-mon-RLW) = L(det-left-mon-RL).

Part (a) is an immediate consequence of part (b) and Lemma 1. Thus, it re-
mains to prove the equalities in (b). To derive them we will make use of a charac-
terization of the language class L(det-left-mon-RLWW) in terms of deterministic
transducers (det-GSM, for short) and deterministic context-free languages. A
det-GSM G is a deterministic finite-state acceptor with output. Formally it is
specified by a 6-tuple G = (Q,Σ,Δ, δ, q0, F ), where Q,Σ, and Δ are a set of
states, an input alphabet, and an output alphabet, respectively, δ is a partial
mapping from Q×Σ to Q×Δ∗, q0 ∈ Q is the initial state, and F ⊆ Q is a set of
final states. If G is in state q scanning the input symbol a, and if δ(q, a) = (p, w),
then in the next step G will enter state p, move its head one step to the right,
and emit (output) the string w. With this det-GSM we can associate a partial
mapping G : Σ+ → Δ∗ as follows. Let x ∈ Σ+. If G ends up in a final state
when processing the input x starting from its initial state q0, then G(x) ∈ Δ∗

denotes the concatenation of all consecutive words that G outputs during this
process [3].

We associate a deterministic transducer with every deterministic RRWW-
automaton. Let M be a deterministic RRWW-automaton with state set Q and
input alphabet Σ. Without loss of generality we can assume that during each
cycle and also during the tail of each computation M scans its tape completely
from left to right before it restarts, accepts, or rejects, respectively. Hence, given
a word w ∈ Σ+ as input for which M performs at least one rewrite step, M will
first execute a sequence of transitions of the form

q0cw$ = q0cw1uw2$ &∗M $w1p1uw2$ &M cw1vp2w2$ &∗M cw1vw2p3$,

where q0 is the initial state, p1, p2, p3 are states, δ(p1, u) = (p2, v) is the rewrite
step applied during this cycle, and |u| = k. (The case that the first rewrite step
is applied to a suffix of w of length smaller than k can be treated in an analogous
manner).

For i = k − 1, . . . , |w|, we associate a state qi of M with the letter w[i] as
follows. For all i satisfying k − 1 ≤ i ≤ |w1u| or |w1u|+ k ≤ i ≤ |w|, we take qi

to denote the state of M during the above sequence at that moment when the
rightmost position of the read/write window contains the letter w[i], and for all
values of i satisfying |w1u| < i < |w1u|+ k, we take qi to be state p1. The latter
alternative corresponds to the fact that, after performing the rewrite transition
u → v, the read/write window of M jumps to the right such that its rightmost
position contains the k-th letter of w2, that is, the first k− 1 letters of w2 never
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occur at that position in the read/write window. Finally, for i = 1, . . . , k− 2, we
take qi :=⊥, where ⊥�∈ Q is a new (dummy) symbol, as the rightmost position
of the read/write window is never on a position i < k−1 (ignoring inputs shorter
than k). The sequence q1, . . . , q|w| will be denoted by traceM (w).

As M is a deterministic RRWW-automaton, there exists a deterministic trans-
ducer GM that, given a word w ∈ Σn as input, will produce the output

(w[1], q1)(w[2], q2) . . . (w[n], qn) ∈ (Σ × (Q ∪ {⊥}))n,

that is, for each language L ⊆ Σ+,

GM (L) = { y ∈ (Σ × (Q ∪ {⊥}))+ |π1(y) ∈ L and π2(y) = traceM (π1(y)) }.

Thus, GM (L) contains the words of L, ‘enriched’ with information on the be-
haviour of M during the first cycle of its computation on that particular input.
The following result, which is a slight generalisation of Lemma 3.8 of [11], es-
tablishes a connection between left-monotone deterministic RRWW-automata,
deterministic transducers, and DCFL.

Proposition 1.
For each left-monotone det-RRWW-automaton M , GM (L(M)) ∈ DCFLR.

Proof. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a deterministic RRWW-automaton
that is left-monotone. As DCFL = L(det-mon-RRWW), it suffices to construct a
right-monotone deterministic RRWW-automaton M ′ := (Q′, Ω, Γ ′, c, $, q′0, k

′, δ′)
for the language (GM (L(M)))R, where Ω := Σ × (Q ∪ {⊥}) and k′ := 2k + 1.
This automaton will simulate M cycle by cycle.

Recall that each cycle of a computation of M consists of three phases:

(i) a MVR-phase, in which M scans a prefix of the current tape content from
left to right using MVR instructions only;

(ii) a rewrite-phase, in which M applies a rewrite step;
(iii) another MVR-phase, in which M scans the suffix of the tape content to

the right of the position where the rewrite step took place. This phase ends
with either a restart step, or an accept instruction, or a reject when the
read/write window contains only the right delimiter $.

Let C1, C2, . . . , Cm be the sequence of cycles of a computation of M . As M is
left-monotone, we have Dl(C1) ≥ Dl(C2) ≥ . . . ≥ Dl(Cm). On the other hand,
as M is deterministic, we have Dl(Ci+1) > Dl(Ci) − k, as M cannot make a
rewrite step in cycle Ci+1 while its read/write window is still completely on the
prefix of the current tape content that was scanned in phase (i) of the previous
cycle, that is, Dl(Ci)− k + 1 ≤ Dl(Ci+1) ≤ Dl(Ci) (1 ≤ i < m).

Now we describe the behaviour of the right-monotone deterministic RRWW-
automaton M ′. For an input y ∈ Ω+, it simulates the computation of M for the
input w := π1(y)R. Each cycle of a computation of M ′ consists of three phases
analogous to the corresponding cycle of M .
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(1) M ′ first performs a number of MVR steps, scanning a prefix of y. This
corresponds to phase (iii) of the corresponding cycle of M ’s computation on
input w, and it continues until the reversal of the left-hand side of a rewrite
step of M is found, and the state stored with the leftmost of these letters
indicates that M would now execute a rewrite step. While making these
MVR steps M ′ executes the following computations:
(a) As long as the symbols read are input symbols, it checks that the states

stored in the second components describe the reverse of a valid sequence
of state transitions of M that is compatible with the letters from Σ stored
in the first components and that correspond to a third phase of a cycle
of M . This checking is abandoned if and when M ′ encounters a symbol
that indicates by a special mark that a rewrite has been performed before
(see (2) below).

(b) For the current position of its read/write window, M ′ determines the
following two sets of states of M , where y1 is the prefix that has been
scanned so far (including the first symbol of the current content of the
read/write window), and w1 := π1(y1)R:

Q+(w1) := { q ∈ Q | cqw1$ &MVR∗
M ACCEPT },

Qrs(w1) := { q ∈ Q | cqw1$ &MVR∗
M RESTART },

where &MVR∗
M denotes a finite sequence of MVR steps of M .

1w

M’: u

k

R

k1

"trace track"

window position at rewrite

M:

1wR

k
window position at rewrite

u3w 4w

4w 3wR R

k 1

y1

(2) The automaton M ′ uses the part from positions 2 to k + 1 of its read/write
window to simulate the read/write window of M . The part from positions
k+2 to 2k+1 serves as a kind of look-ahead, in which M ′ sees those symbols
(in reverse) that M saw in the previous k positions (see the diagram above).
When M ′ contains (the reversal of) the lefthand side of the actual rewrite
step of M in positions 2 to k + 1 of its read/write window, then it can
determine from the state stored with the (k + 2)-nd letter in its read/write
window the actual state of M , and it can verify that M would now perform
a rewrite step. Observe that due to the fact that M is left-monotone, the
prefix w3w4 to the left of the current position of the read/write window of
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M has not yet been rewritten in any way, that is, these letters are still from
the original input. Now M ′ simulates the rewrite step of M , using a special
auxiliary symbol for replacing the last letter of wR

1 to indicate for future
cycles (see (1)) that a rewrite has been performed. The first position of the
read/write window of M ′ still contains the first letter of the suffix w1 of the
tape content of M . Hence, from the state that M enters after performing the
rewrite step and the sets Q+(w1) and Qrs(w1) associated with this particular
letter (see (1)), M ′ can determine the outcome of phase (iii) of the current
cycle of M . Accordingly, M ′ now knows whether M would accept or reject
in this cycle.

(3) Finally M ′ scans the remaining suffix of its tape content. As long as the
symbols read are input symbols, it checks that the states stored in the sec-
ond components describe the reverse of a valid sequence of state transitions
of M that is compatible with the letters from Σ stored in the first compo-
nents and that correspond to a first phase of a cycle of M . If all these tests
are successful, then M ′ restarts or accepts, if M would restart or accept,
respectively. Otherwise, M ′ rejects.

It follows that M ′ does indeed accept the language (GM (L(M)))R, and that
M ′ is right-monotone. �

As a direct consequence of Theorem 2(b) and the above proposition, we see
that, for each language L ∈ L(det-left-mon-RLWW), there exists a deterministic
transducer G such that G(L)R ∈ DCFL. In order to prove Theorem 3(b), we now
derive a technical result which may be seen as the converse of Proposition 1.
However, it is stronger than that, as it applies to det-left-mon-RL-automata.

Lemma 2. Let G be a deterministic transducer with input alphabet Σ, and let
L ⊆ Σ+. If G(L)R ∈ DCFL, then there exists a det-left-mon-RL-automaton M
that accepts the language L.

Together with the above proposition this lemma implies Theorem 3(b). Ac-
tually we obtain the following characterization.

Corollary 1. For a language L ⊆ Σ+, the following statements are equivalent:
(a) There exists a deterministic transducer G such that G(L)R ∈ DCFL.
(b) L ∈ L(det-left-mon-RL).
(c) L ∈ L(det-left-mon-RLW).
(d) L ∈ L(det-left-mon-RLWW).

It remains to prove Lemma 2. Let G = (Q,Σ,Δ, δ, qstart, F ) be a determin-
istic transducer, and let L be a language over Σ such that G(L)R ∈ DCFL.

In order to avoid messy technical details, we divide the proof into two parts.
In the first part we replace G by a ‘uniform’ det-GSM G̃ that produces one
output letter for each input letter read. This det-GSM will have output alphabet
Δ̃ := (Σ ×Q×Δ≤p), where p is the maximal length of any output word that G
can produce in a single step. For each input symbol read, G̃ will output the input
symbol, the state reached by the current transition, and the output produced
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by G. Formally, G̃ := (Q,Σ, Δ̃, δ̃, qstart, F ), where, for each q ∈ Q and a ∈ Σ, if
δ(q, a) = (q′, y) ∈ Q×Δ∗, then δ̃(q, a) := (q′, (a, q′, y)) ∈ Q× Δ̃.

Let π1 : Δ̃∗ → Σ∗ be the morphism that is induced by mapping each
letter (a, q, y) ∈ Δ̃ onto its first coordinate a, and let π3 : Δ̃∗ → Δ∗ be the
morphism that is induced by mapping each letter (a, q, y) ∈ Δ̃ onto the word
y ∈ Δ∗. From the above definition it follows immediately that π1(G̃(x)) = x and
π3(G̃(x)) = G(x) holds for each input x that is accepted by G.

Proposition 2. If G(L) is in DCFLR, then so is G̃(L).

Proof. Let (x, q, y) ∈ Δ̃+. In order to check whether (x, q, y) ∈ G̃(L), we need
to verify that x ∈ G(L) and that q and y are consistent with x and G. To this
end we combine a deterministic pushdown automaton that recognizes G(L)R

with a deterministic one-way finite-state acceptor that, given (xR, qR, yR) as
input, checks whether (x[i], q[i], y[i]) and (x[i + 1], q[i + 1], y[i + 1]), 1 ≤ i < |x|,
are consistent with the definition of the det-GSM G. Moreover, it must check
whether the last letter of (xR, qR, yR) is of the form (x[1], q[1], y[1]) such that
δ(qstart, x[1]) = (q[1], y[1]) holds. �

As DCFL = L(det-mon-R) (Theorem 1(b)), there exists a monotone det-R-
automaton M1 that accepts the language G̃(L)R. From M1 we immediately
obtain a det-RL-automaton M2 for the language G̃(L): in each cycle M2 first
moves its window to the right delimiter, checking that the actual tape content is
of the form G̃(x) for some word x ∈ Σ+. In the negative it rejects immediately,
while in the affirmative it then simulates the current cycle of M1, replacing
MVR steps by MVL steps. We can even require that M2 aborts this simulation
and rejects when it comes upon a rewrite transition that would transform a
word of the form G̃(x) into a word that does not belong to the set G̃(Σ+).
As M1 is monotone, it follows that M2 is left-monotone. Hence, we see that
G̃(L) ∈ L(det-left-mon-RL).

Finally we present a left-monotone det-RL-automaton M3 that, given a word
x ∈ Σ+ as input, simulates the computation of M2 on G̃(x). Notice that the
information that is stored in the second and third coordinates of G̃(x) is missing
when the input x is being processed. Thus, M3 needs to ‘recover’ this information
from x. For this the following two observations are useful.

First of all, it is rather obvious that there exists a deterministic finite-state
acceptor AG that simulates the deterministic transducer G in such a way that,
after processing the i-th symbol of an input word x ∈ Σ+, where 1 ≤ i ≤ |x|,
the state of AG contains the i-th symbol of the word G̃(x). Accordingly, when
scanning the given input x from left to right, the det-RL-automaton M3 can easily
recover that part of G̃(x) that corresponds to the part of x that is currently inside
the read/write window.

For ‘recovering’ this information also in the case that the read/write window
is moving from right to left, we need the following result, which is taken from
[1], pages 212–213 (see also Lemma 3 of [2]). In fact, this lemma is crucial for
our construction.
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Lemma 3. Let A be a deterministic finite-state acceptor. For each word x and
each integer i, 1 ≤ i ≤ |x|, let qA(x, i) be the state of A after processing the prefix
of length i of x. Then there exists a deterministic two-way finite-state acceptor
A′ such that, for each input x and each i ∈ {2, 3, . . . , |x|}, the following condition
is satisfied:

– if A′ starts its computation on x in state qA(x, i) with its head on x[i], then
A′ finishes its computation in state qA(x, i− 1) with its head on x[i− 1].

Hence, there exists a deterministic two-way finite-state acceptor A′
G that,

starting in state qAG(x, i) with tape content x and its head on the symbol x[i],
finishes its computation in state qAG(x, i − 1) with its head on x[i − 1]. Using
A′

G the det-RL-automaton M3 is able to recover the information on G̃(x) from
x while moving its read/write window from right to left.

Now we are prepared for describing the restarting automaton M3. Each cycle
of M2 on input G̃(x) is simulated by a cycle of M3 on input x as follows:

(1) First M3 simulates the computation of the deterministic finite-state accep-
tor AG until it reaches the right delimiter. In this way it computes the k
rightmost positions of G̃(x).

(2) Next M3 simulates the behaviour of M2 step by step until it reaches the
configuration in which M2 applies the rewrite step of the current cycle. Each
time it must simulate a MVL step, it runs the automaton A′

G in order to
recover the value of G̃(x) at the new leftmost position in the read/write
window. Note that at the beginning of the simulation M3 knows the part of
G̃(x) that is contained in the read/write window (see (1)). Hence, by using
A′

G it is able to satisfy this condition for each successive step.
(3) Finally, M3 simulates the current rewrite step of M2 (that is, it removes the

appropriate symbols).

Recall that M2 checks in each cycle that its current tape content is indeed
of the form G̃(w). Thus, given an input x ∈ Σ+, M3 simulates the computation
of M2 on G̃(x) cycle by cycle. Further, M3 accepts the given input x if and
only if M2 accepts the input G̃(x). Hence, it follows that L(M3) = L. As M2 is
left-monotone, M3 is left-monotone, too. This completes the proof of Lemma 2.

4 Conclusions

For modelling the analysis of natural languages those variants of restarting au-
tomata are preferable that do not use auxiliary symbols, as their operation can
be interpreted as reducing a given sentence to a ‘simple’ form within the same
language. Here we have seen that at least for deterministic two-way restarting
automata that are left- or right-monotone, the variant without auxiliary sym-
bols is as powerful as the variant that is allowed to use auxiliary letters. In
fact, each det-left-mon-RLWW-automaton can be transformed into an equivalent
det-left-mon-RL-automaton, as each step of this transformation process is effec-
tive, and analogously for right-monotonicity. Actually, our main result carries
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over to the class of deterministic two-way restarting automata that are simulta-
neously left- and right-monotone. However, the proof for this case given in [8]
is completely different from the proof for the left-monotone case presented here
as it is based on pumping techniques. Finally, we should remark that the results
of this paper do not carry over to deterministic two-way restarting automata in
general.

Acknowledgement. The authors thank M. Chytil and V. Jákl for pointing
them to the work of Aho, Hopcroft, and Ullman on the reversibility of determin-
istic two-way transducers.
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Abstract. The paper examines the concept of hairpin-free words mo-
tivated from the biocomputing and bioinformatics fields. Hairpin (-free)
DNA structures have numerous applications to DNA computing and
molecular genetics in general. A word is called hairpin-free if it cannot
be written in the form xvyθ(v)z, with certain additional conditions, for
an involution θ (a function θ with the property that θ2 equals the identity
function).
We consider three involutions relevant to DNA computing: a) the mirror
image function, b) the DNA complementarity function over the DNA
alphabet {A, C, G, T} which associates A with T and C with G, and c)
the Watson-Crick involution which is the composition of the previous
two. We study elementary properties and finiteness of hairpin (-free)
languages w.r.t. the involutions a) and c). Maximal length of hairpin-
free words is also examined. Finally, descriptional complexity of maximal
hairpin-free languages is determined.

Keywords: DNA computing, DNA hairpin, involution, finite automaton

1 Introduction

The primary motivation for study of hairpin-free structures in this paper arises
from the areas of DNA computing and bioinformatics, where such structures
are important for the design of information-encoding DNA molecules. A sin-
gle strand DNA molecule can be formally described as a string over the DNA
alphabet Δ = {A,C, T,G}. These four symbols correspond to nucleotides at-
tached to a sugar-phosphate backbone. Two single strands can bind (anneal) to
each other if they have opposite polarity (the strand’s orientation in space) and
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are pairwise Watson-Crick complementary: A is complementary to T, and C to
G. The ability of DNA strands to anneal to each other allows for creation of
various secondary structures. A DNA hairpin is a particular type of secondary
structure important in many applications. An example of a hairpin structure is
shown in Figure 1. The figure characterizes the case when θ is the Watson-Crick
antimorphic involution (see the next section for exact definition).

GC T AT C
GAT AGC A

C C
A
T

AC C T

G
C

A
TGAC

CTG

Fig. 1. A single-stranded DNA molecule forming a hairpin loop

Hairpin-like secondary structures play an important role in insertion/deletion
operations with DNA. Hairpin-freedom is crucial in the design of primers for
the PCR reaction [4]. Hairpins are the main tool used in the Whiplash PCR
computing techniques [17]. In [19] hairpins serve as a binary information medium
for DNA RAM. Last, but not least, hairpins are basic components of recently
investigated “smart drugs” [1]. Therefore, in the above mentioned applications,
one needs to construct (sets of) hairpin(-free) DNA molecules, or to test existing
sets of DNA molecules for hairpin-freedom and study their properties. We refer
e.g. to [16] for an overview of design of DNA languages without hairpins and other
undesired bonds. Coding properties of hairpin-free languages have been studied
in [11, 12]. Hairpins have also been studied in the context of bio-operations
occurring in single-celled organisms (see the hairpin inversion operation defined
as one of the three molecular operations that accomplish gene assembly in ciliates
[6, 8]).

In addition, the presented results also contribute to mathematical character-
ization of regularities in formal words and languages. In this sense the definition
of hairpin-free words can be understood as a generalization of repetition-freedom.
A word u is called hairpin-k-free if u = xvyθ(v)z implies |v| < k, for a chosen
involution θ. Considering the special case when k = 1, θ is the identity involution
and y is the empty word, we obtain the square-freedom (see below).

For a general overview and fundamental results in combinatorics on words,
the reader is referred to [5, 13]. If w is an nonempty word, then ww is called a
square and www is called a cube. Important questions about avoiding squares
and cubes in infinite words have been answered in [7]. See [14] for combinatorics
on finite words. Words of the form uvyvz with a bounded length of y have
been studied e.g. in [3]. Unfortunately, many techniques and results known in
combinatorics on words are non-applicable in the case of hairpin-free words. One
of the main reasons is that in the case of an antimorphic involution, analogies
of the famous defect theorem and its consequences are no longer valid.

The paper is organized as follows. Section 2 introduces basic formal concepts
and definitions. In Section 3 we present the concept of hairpin-free words and
languages and study their elementary properties. Problems related to the finite-
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ness of hairpin-free languages are addressed in Section 4. Finally, in Section 5
we study descriptional complexity of hairpin (-free) languages with regards to
possible applications.

2 Formal Language Prerequisites

We will use X to denote a finite alphabet and X∗ its corresponding free monoid.
The cardinality of the alphabet X is denoted by |X |. The empty word is denoted
by 1, and X+ = X∗ − {1}. A language is an arbitrary subset of X∗. For a word
w ∈ X∗ and k ≥ 0, we denote by wk the word obtained as catenation of k copies
of w. Similarly, Xk is the set of all words from X∗ of length k. By convention,
w0 = 1 and X0 = {1}. We also denote X≤k = X0∪X1∪. . .∪Xk. By convention,
X≤k = ∅ for k < 0.

A mapping ψ : X∗ → X∗ is called a morphism (anti-morphism) of X∗

if ψ(uv) = ψ(u)ψ(v) (respectively ψ(uv) = ψ(v)ψ(u)) for all u, v ∈ X∗, and
φ(1) = 1. See [9] for a general overview of morphisms. An involution θ : X −→ X
is defined as a map such that θ2 is the identity function. An involution θ can be
extended to a morphism or an antimorphism over X∗. In both cases θ2 is the
identity over X∗ and θ−1 = θ. If not stated otherwise, θ refers to an arbitrary
morphic or antimorphic involution in this paper.

In our examples we shall refer to the DNA alphabet Δ = {A,C, T,G}. By
convention, DNA strands are described by strings over this alphabet in orien-
tation from 5’ to 3’ end. On this alphabet several involutions of interest are
defined. The simplest involution is the identity function ε. An antimorphic in-
volution which maps each letter of the alphabet to itself is called a mirror in-
volution and it is denoted by μ. The DNA complementarity involution γ is a
morphism given by γ(A) = T , γ(T ) = A, γ(C) = G, γ(G) = C. For example,
ε(ACGCTG) = ACGCTG = μ(GTCGCA) = γ(TGCGAC).

Finally, the antimorphic involution τ = μγ (the composite function of μ and
γ, which is also equal to γμ), called the Watson-Crick involution, corresponds
to the DNA bond formation of two single strands. If for two strings u, v ∈ Δ∗ it
is the case that τ(u)v, then the two DNA strands represented by u, v anneal as
Watson-Crick complementary sequences.

A nondeterministic finite automaton (NFA) is a quintuple A = (S,X, s0, F, P ),
where S is the finite and nonempty set of states, s0 is the start state, F is the set
of final states, and P is the set of productions of the form sx → t, for s, t ∈ S,
x ∈ X. If for every two productions sx1 → t1 and sx2 → t2 of an NFA we have
that x1 �= x2 then the automaton is called a DFA (deterministic finite automa-
ton). The language accepted by the automaton A is denoted by L(A). The size
|A| of the automaton A is the number |S| + |P |. We refer to [18] for further
definitions and elements of formal language theory.

3 Involutions and Hairpins

Definition 1. If θ is a morphic or antimorphic involution of X∗ and k is a
positive integer, then a word u ∈ X∗ is said to be θ-k-hairpin-free or simply
hp(θ,k)-free if u = xvyθ(v)z for some x, v, y, z ∈ X∗ implies |v| < k.



On Hairpin-Free Words and Languages 299

Notice that the words 1 and a ∈ X are hp(θ,1)-free. More generally, words of
length less than 2k are hp(θ,k)-free. If we interpret this definition for the DNA
alphabet Δ and the Watson-Crick involution τ , then a hairpin structure with
the length of bond greater than or equal to k is a word that is not hp(τ ,k)-free.

Definition 2. Denote by hpf (θ, k) the set of all hp(θ,k)-free words in X∗. The
complement of hpf (θ, k) is hp(θ, k) = X∗ − hpf (θ, k).

Notice that hp(θ, k) is the set of words in X∗ which are hairpins of the form
xvyθ(v)z where the length of v is at least k. It is also the case that hp(θ, k+1) ⊆
hp(θ, k) for all k > 0.

Definition 3. A language L is called θ-k-hairpin-free or simply hp(θ, k)-free if
L ⊆ hpf (θ, k).

It is easy to see from the definition that a language L is hp(θ, k)-free if and
only if X∗vX∗θ(v)X∗ ∩ L = ∅ for all |v| ≥ k. An analogous definition was
given in [11] where a θ-k-hairpin-free language is called θ-subword-k-code. The
authors focused on their coding properties and relations to other types of codes.
Restrictions on the length of a hairpin were also considered, namely that 1 ≤
|y| ≤ m for some m ≥ 1. The reader can verify that our Proposition 3 remains
valid and the results in Section 5 change only slightly if we apply this additional
restriction.

Example.

1. Let X = {a, b} with θ(a) = b, θ(b) = a. Then hpf (θ, 1) = a∗ ∪ b∗.
This example shows that in general the product of hp(θ, 1)-free words is not
an hp(θ, 1)-free word. Indeed, a and b are hp(θ, 1)-free, but the product ab
is not.

2. If θ = γ is the DNA complementary involution over Δ∗, then:

hpf (θ, 1) = {A,C}∗ ∪ {A,G}∗ ∪ {T,C}∗ ∪ {T,G}∗

3. Let θ = μ be the mirror involution and let u ∈ hpf (θ, 1). Since θ(a) = a
for all a ∈ X , u cannot contain two occurrences of the same letter a. This
implies that hpf (θ, 1) is finite. For example, if X = {a, b}, then:

hpf (θ, 1) = {1, a, b, ab, ba}

We focus first on the important special case when k = 1. Observe that
hp(θ, 1) =

⋃
a∈X X∗aX∗θ(a)X∗. Recall also the definition of an embedding or-

der: u ≤e w if and only if

u = u1u2 · · ·un, w = v1u1v2u2 · · · vnunvn+1

for some integer n with ui, vj ∈ X∗.
A language L is called right ≤e-convex [20] if u ≤e w, u ∈ L implies w ∈ L.

The following result is well known: All languages (over a finite alphabet) that
are right ≤e-convex are regular.
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Proposition 1. The language hp(θ, 1) is right ≤e-convex.

Proof. If u = u1u2 ∈ hp(θ, 1) and v1, v2, v3 ∈ X∗, then w = v1u1v2u2v3 ∈
hp(θ, 1). Therefore, if u ∈ hp(θ, 1) and u ≤e w, then w can be constructed from
u by a sequence of insertions, and hence w ∈ hp(θ, 1). ��

Let L ⊆ X∗ be a nonempty language and let:

S(L) = {w ∈ X∗|u ≤e w, u ∈ L}.

Hence S(L) is the set of all the words w ∈ X∗ that can be expressed in the form
w = x1u1x2u2 · · ·xnunxn+1 with u = u1u2 · · ·un ∈ L and xi ∈ X∗.

Recall further that a set H with ∅ �= H ⊆ X+ is called a hypercode over X∗

iff x ≤e y and x, y ∈ H imply x = y. That is, a hypercode is an independent set
with respect to the embedding order.

Proposition 2. Let θ be a morphic or antimorphic involution. Then there exists
a unique hypercode H such that hp(θ, 1) = S(H).

Proof. Let H =
⋃

a∈X aθ(a), then S(H) =
⋃

a∈X X∗aX∗θ(a)X∗ = hp(θ, 1). The
uniqueness of H is immediate. ��
Example. Consider the hypercodes for the earlier three examples.

1. For X = {a, b} and the involution (morphic or antimorphic) θ(a) = b, θ(b) =
a, the hypercode is H = {ab, ba}.

2. For the DNA complementarity involution γ we have H = {AT, TA,CG,GC}.
3. The mirror involution over {a, b}∗ gives the hypercode H = {aa, bb}.

Proposition 1, true for the case k = 1, cannot in general be extended to
the case k > 1 as the language hp(θ, 2) is not ≤e-convex. However, the weaker
regularity property remains valid. Note that hp(θ, k) =

⋃
|w|≥k X∗wX∗θ(w)X∗.

Proposition 3. The languages hp(θ, k) and hpf (θ, k), k ≥ 1, are regular.

Proof. One can easily derive hp(θ, k)
⋃

|w|=k X∗wX∗θ(w)X∗. Every language
X∗wX∗θ(w)X∗with |w| = k is regular, hence hp(θ, k) is a union of a finite num-
ber of regular languages. Therefore both hp(θ, k) and its complement hpf (θ, k)
are regular. ��

4 Finiteness of Hairpin-Free Languages

In this section we give the necessary and sufficient conditions under which the
language hpf (θ, k) is finite, for a chosen k ≥ 1. We study first the interesting
special case of μ, the mirror involution, over a binary alphabet X.

Recall that hp(μ, k) is the set of all words containing two non-overlapping
mirror parts of length at least k. In the next proposition we show that the longest
hp(μ, 4)-free word is of length 31. This also implies that the language hpf (μ, 4)
is finite. The proof requires several technical lemmata whose proofs are omitted
due to page limitations and can be found in [15]. In these lemmata we assume
that |X | = 2.
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Definition 4. A run in a word w is a subword of w of the form ck, with c ∈ X
and k ≥ 1, such that w = uckv for some word u that does not end with c, and
some word v that does not start with c.

Lemma 1. Suppose that w is a word in hpf (μ, 4). The following statements hold
true.

1. If ai is any run in w then i ≤ 7. If the run is internal then i ≤ 5.
2. The word w cannot contain three different runs ai1 , ai2 , ai3 with i1, i2, i3 ≥ 3.

If w contains two runs aj and ai with i, j ≥ 3 then w starts with ajbai, or
w ends with aibaj. Moreover not both i and j can be greater than 3.

3. The word w cannot contain three different internal runs a2. If w contains
two internal runs a2 then they occur as in · · · ba2ba2b · · ·.

4. The above statements also hold if we replace a with b and vice-versa.

Lemma 2. Suppose that a word in hpf (μ, 4) contains a subword w of the form

abx1ay1 · · · bxnaynb,

with n ≥ 3 and xi, yi ≥ 1 for each i. Then there are at most three indices i such
that xi = yi = 1.

Lemma 3. Suppose that a word w is in hpf (μ, 4) and contains two runs cj and
ci with i, j ≥ 3 and c ∈ X. Then |w| ≤ 31.

Lemma 4. Suppose that a word w is in hpf (μ, 4) and contains no two runs cj

and ci with i, j ≥ 3 and contains two internal runs b2 and one internal run by

with y ≥ 3 and w is of the following form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),

where all yi’s and xj ’s are positive except possibly for yn+1. Then |w| ≤ 31.

Lemma 5. If a word w is in hpf (μ, 4) and of the form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),

such that y0, xn+1 ≥ 3, and 2 ≥ yn+1 ≥ 0, and 2 ≥ xi, yi > 0 for all i = 1, . . . , n,
then |w| ≤ 30. Moreover, the following word of length 30 satisfies the above
premises:

a7b2ab2abababa2ba2b7.

Proposition 4. Let X be a binary alphabet. For every word w ∈ X∗ in hpf (μ, 4)
we have that |w| ≤ 31. Moreover the following word of length 31 is in hpf (μ, 4)

a7ba3bababab2ab2a2b7.

Proof. Without loss of generality we can assume that w starts with a. Then w
would be of the form

ay0bx1ay1 · · · bxnayn(bxn+1ayn+1),
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where all yi’s and xj ’s are positive except possibly for yn+1. We distinguish the
following cases.

Case 1: There are two runs ci and cj in w with i, j ≥ 3. By Lemma 3, |w| ≤ 31
as required.

In the next 7 cases, we assume that the first case does not hold and that
there is exactly one run aδ in w with δ ≥ 3.

Case 2: The run aδ is ay0 and there is a run bi with i ≥ 3. If xn+1 ≥ 3 then
Lemma 5 implies that |w| ≤ 30. So assume that xn+1 ≤ 2. If there are two
internal runs b2 in w then Lemma 4 implies that |w| ≤ 31. So assume further
that there is at most one internal run b2. Note that if xn+1 = 2 and yn+1 > 0
then bxn+1 is the run b2. Let g be the quantity e|b2a|+xn+1 + yn+1, where e = 0
if xn+1 = 2 and yn+1 > 0, and e = 1 if xn+1 = 1 or yn+1 = 0. Hence, g ≤ 6.
Moreover, |w| ≤ 7 + 3|ba|+ 2|ba2|+ |b5a|+ g ≤ 31.

Case 3: The run aδ is ay0 and there is no run bi with i ≥ 3. Using again the
quantity g of Case 2, we have that |w| ≤ 7 + 3|ba|+ 2|ba2|+ |b2a|+ g ≤ 28.

Case 2’: The run aδ is ayn+1 and there is a run bi with i ≥ 3. Then the word
μ(w) is of the same form as the word w is and the run bi occurs in μ(w). Hence,
Case 2 applies to μ(w) and, therefore, both μ(w) and w are of length at most
31.

Case 3’: The run aδ is ayn+1 and there is no run bi with i ≥ 3. Then the word
μ(w) is of the same form as the word w is and no run bi, with i ≥ 3, occurs
in μ(w). Hence, Case 3 applies to μ(w) and, therefore, both μ(w) and w are of
length at most 28.

Case 4: The run aδ is internal and there is one internal run bj with j ≥ 3.
Then j, δ ≤ 5. If w contains two internal runs b2 then Lemma 4 implies that
|w| ≤ 31. Next assume that w contains at most one internal run b2 and consider
the quantity g = e|b2a| + xn+1 + yn+1 as in Case 2. If w contains at most one
internal run a2 then

|w| ≤ y0 + 3|ba|+ |ba2|+ |ba5|+ |b5a|+ g ≤ 2 + 6 + 3 + 6 + 6 + 6 = 29.

Next assume further that w contains two internal runs a2. Then Lemma 1 implies
that w contains ba2ba2b. Also,

|w| ≤ 2 + 6 + 2|ba2|+ 6 + 6 + g ≤ 26 + g.

If xn+1 = 2 and yn+1 > 0 then e = 0 and |w| ≤ 30. If yn+1 = 0 then e = 1
and |w| ≤ 31. If xn+1 = 1 and yn+1 = 1 then |w| ≤ 31. Finally, if xn+1 = 1
and yn+1 = 2 then w ends with aba2, which contradicts the fact that w contains
ba2ba2b.

Case 4’: The run aδ is internal and there is one external run bj with j ≥ 3. Then
yn+1 = 0 and the run bj is bxn+1, as y0 > 0. Let w′ be the word resulting by
exchanging the letters a and b in w. Then the word μ(w′) satisfies the premises
of Case 2, which implies that w is of length at most 31.
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Case 5: The run aδ is internal and there is no run bj with j ≥ 3. Using again the
quantity g of Case 2, we have that |w| ≤ y0+3|ba|+ |ba5|+2|ba2|+ |b2a|+g ≤ 29.
Case 6: Here the first case does not hold and there is no run aδ with δ ≥ 3. If there
is an internal run bj with j ≥ 3 then |w| ≤ y0+3|ba|+|b5a|+2|ba2|+|b2a|+g ≤ 29.
If there is an external run bj with j ≥ 3 then bj = bxn+1 and yn+1 = 0, and one
can verify that |w| ≤ 27. If there is no run bj with j ≥ 3 then one can verify
that |w| ≤ 23.

Finally, by inspection one verifies that a7ba3bababab2ab2a2b7 is indeed in
hpf (μ, 4). ��
Corollary 1. Consider a binary alphabet X. Then hpf (μ, k) is finite if and only
if k ≤ 4.

Proof. Denote X = {a, b}. By Proposition 4, the set hpf (μ, 4) is finite. Now
consider the language L5 = (aabbab)+. The set of its subwords of length 5 is
Sub5(L5) = {aabba, abbab, bbaba, babaa, abaab, baabb}.For its mirror image μ(L5)
we obtain Sub5(μ(L5)) = {abbaa, babba, ababb, aabab, baaba, bbaab}.As these two
sets are mutually disjoint, L5 ⊆ hpf (μ, 5).

Finally, notice that for k > 1, finiteness of hpf (μ, k) implies also finiteness
of hpf (μ, k − 1). Hence the facts that hpf (μ, 4) is finite and hpf (μ, 5) is infinite
conclude the proof. ��
Proposition 5. Let θ be a morphic or antimorphic involution. The language
hpf (θ, k) over a non-singleton alphabet X is finite if and only if one of the
following holds:
(a) θ = ε, the identity involution;
(b) θ = μ, the mirror involution, and either k = 1 or |X | = 2 and k ≤ 4.

Proof. (a) Let θ be a morphism. Assume first that θ �= ε. Then there are a, b ∈ X,
a �= b, such that θ(a) = b. Then a+ ⊆ hpf (θ, k) for any k ≥ 1, hence hpf (θ, k)
is infinite.
Assume now that θ = ε and let w be any word of length ≥ k|X |k + k.
Since there exist |X |k distinct words of length k, there are at least two non-
overlapping subwords of length k in w which are identical. Hence w = xvyvz
for some v ∈ Xk and x, y, z ∈ X∗. Therefore hpf (ε, k) is finite since it cannot
contain any word longer than k|X |k + k.

(b) Let θ be an anti-morphism. Assuming that θ �= μ, the same arguments as
above show that hpf (θ, k) is infinite.
Assume now that θ = μ. Apparently hpf (μ, 1) is finite as shown in the
examples above. For |X | = 2 we know that hpf (μ, k) is finite iff k ≤ 4 by
Corollary 1. Finally, for |X | > 2 and k > 1 the language hpf (μ, k) is infinite
as it always contains the hp(μ, 2)-free set (abc)+ (regardless to renaming the
symbols). ��

5 Descriptional Complexity of Hairpin(-Free) Languages

The regularity of the languages hp(θ, k) and hpf (θ, k) shown in Section 3 in-
dicates an existence of fast algorithms deciding problems related to hairpin-
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freedom. For such algorithms, a construction of automata (NFA or DFA) ac-
cepting the languages hp(θ, k) and hpf (θ, k) would be important. Therefore we
investigate minimal size of these automata. We recall the following technical
tools from [2], see also [10].

Definition 5. A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called a fool-
ing set for a language L if for any i, j in {1, 2, . . . , n},
(1) xiyi ∈ L, and
(2) if i �= j then xiyj �∈ L or xjyi �∈ L.

Lemma 6. Let F be a fooling set of a cardinality n for a regular language L.
Then any NFA accepting L needs at least n states.

Now we can characterize the minimal size of automata accepting languages
hp(θ, k) and hpf (θ, k). We use the operator

∏
for catenation.

aa

ba

a,b

a,b

a,b

a,b

a,b

a
a

b

a b
q

1

S

S

q

b

a

a

b

b

ab

a,b

qbb

b a

ba
ab

q

S 1
p

p

p

Fig. 2. An example of an NFA accepting the language hp(θ, 2)

Proposition 6. The number of states of a minimal NFA accepting the language
hp(θ, k), k ≥ 1, over an alphabet X of the cardinality � > 1, is between �k and
3�k, its size is at most 3(�k + �k+1).

Proof. Let Mk = (S,X, s1, F, P ) be an NFA accepting hp(θ, k).

(i) The reader can easily verify that the set F = {(w, θ(w))|w ∈ Xk} is a fooling
set for hp(θ, k). Therefore |S| ≥ �k.

(ii) Let
S = {sw, pw |w ∈ X≤k−1} ∪ {qw |w ∈ Xk}.
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Let further F = {p1}. The set of productions P is defined as follows:

sva→ sw if and only if va = w, for each v ∈ X≤k−2, a ∈ X ;
sva→ qw if and only if va = w, for each v ∈ Xk−1, a ∈ X ;
qwa→ qw for all w ∈ Xk, a ∈ X ;
qwa→ pv if and only if θ(av) = w, for each v ∈ Xk−1, a ∈ X ;
pwa→ pv if and only if av = w, for each v ∈ X≤k−2, a ∈ X.

Finally, let s1a → s1 and p1a → p1 for all a ∈ X. An example of the
automaton Mk for the case X = {a, b}, k = 2 and θ being an antimorphism,
θ(a) = b, θ(b) = a, is at Fig. 2. The reader can verify that L(Mk) = hp(θ, k),
and that |S| ≤ 3�k, |P | ≤ 3�k+1, therefore |Mk| ≤ 3(�k + �k+1). ��

Note that for � = 1 we have hp(θ, k) = X2kX∗, therefore the size of the minimal
automaton accepting hp(θ, k) is |Mk| = 4k + 2.

Proposition 7. Assume that there are distinct letters a, b ∈ X such that a =
θ(b). Then the number of states of a minimal NFA accepting hpf (θ, k), k ≥ 1,
over an alphabet X with the cardinality �, is at least 2(�−2)k/2.

Proof. We take into the account only the cases � ≥ 3, the case � = 2 is trivial.
Denote X1 = X \ {a, b}. We can factorize the set Xk

1 = C1 ∪ C2 ∪ C3, where
C1, C2, C3 are mutually disjoint sets such that θ(C1) = C2 and θ(x) = x for all
x ∈ C3. Obviously |C1| = |C2|.

Denote m = |C1 ∪ C3|, then m ≥ (� − 2)k/2. Consider the set of pairs of
strings

F =
{( ∏

w∈D

aw,
∏

w∈(C2∪C3)\θ(D)

aw

) ∣∣∣∣ D ⊆ (C1 ∪ C3)
}
. (1)

We show that F is a fooling set for hpf (θ, k).

(i) Consider an arbitrary pair (x, y) ∈ F . Let z ∈ Xk be a substring of xy. If z
contains a, then θ(z) cannot be in xy as θ(a) = b and b is not in xy. If z does
not contain a, then z ∈ Xk

1 and z is a subword of either x or y. Assume that
z is a part of x. Then, by definition of C1 and C3, there is no occurrence
of θ(z) in x which would not overlap z. Also, θ(z) is not a subword of y as
z ∈ D and hence θ(z) �∈ (C2∪C3)\θ(D). If z is a subword of y, the situation
is analogous. Therefore, xy ∈ hpf (θ, k).

(ii) Let (x, y), (x′, y′) be two distinct elements of F , associated with the sets
D,D′ ⊆ (C1∪C3) in the sense of (1). Let us assume without loss of generality
that there is a z ∈ D \ D′. Then θ(z) ∈ (C2 ∪ C3) and θ(z) �∈ θ(D′),
hence θ(z) is a subword of y′. Simultaneously z is a subword of x, therefore
xy′ �∈ hpf (θ, k).

We can conclude that |F| = 2m ≥ 2(�−2)k/2, and hence the statement follows by
Lemma 6. ��
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Corollary 2. Let X be an alphabet such that |X | = �, � ≥ 2. Let there be distinct
letters a, b ∈ X such that a = θ(b). Then the number of states of a minimal DFA
over the alphabet X, accepting either hp(θ, k) or hpf (θ, k), k ≥ 1, is between
2(�−2)k/2 and 23�k

.

Proof. Observe that the numbers of states of minimal DFA’s accepting hp(θ, k)
and hpf (θ, k) are the same since these languages are mutual complements. Then
the lower bound follows by Proposition 7. The upper bound follows by Propo-
sition 6 and by the subset construction of a DFA equivalent to the NFA Mk

mentioned there. ��

Corollary 3. Consider the DNA alphabet Δ = {A,C, T,G} and the Watson-
Crick involution τ.

(i) The size of a minimal NFA accepting hp(τ, k) is at most 15 ·4k. The number
of its states is between 4k and 3 · 4k.

(ii) The number of states of either a minimal DFA or an NFA accepting hpf (τ, k)
is between 22k−1

and 23·22k

.

Note: after careful inspection of the automaton in the proof of Proposition 6,
one can derive that the actual size is at most 25

3 · 4k + 14
3 and the number of

states do not exceed 5
3 · 4k − 2

3 .

The above results indicate that the size of a minimal NFA for hp(τ, k) grows
exponentially with k. However, one should recall that k is the minimal length
of bond allowing for a stable hairpin. Therefore k is rather low in practical
applications and the construction of the mentioned automaton can remain com-
putationally tractable.
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Abstract. We analyze models of infinite-state automata extended by
monotonic counting mechanisms, starting from the (finite-state) Parikh
automata studied by Klaedtke and Rueß. We show that, for linear-
bounded automata, this extension does not increase the language recog-
nition power. In the framework of infinite transition systems developed
by Caucal and others, we show that adding monotonic counters to syn-
chronized rational graphs still results in synchronized rational graphs, in
contrast to the case of pushdown graphs or prefix-recognizable graphs.
For prefix-recognizable graphs, however, we show that the extension by
monotonic counters retains the decidability of the reachability problem.

1 Introduction

The idea of counting devices is a classical one in automata theory. Counters,
which are a special case of pushdown stacks – namely such with only one stack
symbol – represent the basic model of such devices. Since 2-counter machines
are as powerful as Turing machines [13], regarding algorithmic applications, re-
strictions on the counters under consideration are necessary in order to keep de-
cidability results. Examples of such restrictions are the so-called blind counters
[6], which can be found, for example, in Petri nets. Another kind of restrictions
lies in the so-called reversal-bounded counters [7]; for these counters, the num-
ber of alternations between increments and decrements in any computation is
bounded. A special case of reversal-bounded counters is the class of monotonic
counters, which is the subject of the present paper.

Current applications of these models can be found in the field of algorith-
mic verification and also in database theory; counters allow to capture aspects
of infinite-state system modeling. Examples of such infinite-state systems are
discrete-timed automata [4], reversal-bounded counter machines [8], and some
classes of semi-linear systems [1]. In addition, counters provide the possibility
to capture some fragments of arithmetic in a computation. For instance, au-
tomata on unranked trees (in particular automata on XML documents) can be
equipped with arithmetical conditions referring to the sequences of sibling nodes
(of unbounded length). Such tree automata have been suggested by Dal Zilio
and Lugiez [3] and Seidl et al. [15, 16].

Another example of the application of arithmetic to automata theory, which
also serves as our starting point in this paper, are found in the model of Parikh
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automata of Klaedtke and Rueß [10, 11]. In this context, a finite automaton is
equipped with some monotonic counters, and at the end of a computation the
values of these counters are checked against a constraint of Presburger arith-
metic, which is actually given as a semi-linear set.

The purpose of this paper is to consider automata with two infinitary compo-
nents: an infinite transition graph and a counting mechanism. More precisely, we
extend the model of (finite-state) Parikh automata mentioned above using more
general automaton models instead of finite automata (for example, pushdown
automata and linear-bounded automata1). We show results on the expressive-
ness of the resulting automaton models and on decision problems, in particular
with respect to the reachability problem.

Regarding the first aspect, recall that adding counting mechanism to push-
down automata in the form of considering ‘Parikh pushdown automata,’ as ob-
served in [10], enhances expressive power with respect to language recognition.
As first result, we show that for linear-bounded automata this extension does
not alter the language recognition power.

Our second result concerning ‘expressiveness’ is concerned with the classifica-
tion of infinite transition graphs suggested by Caucal and others (see the survey
[18]). In such a graph, the infinite set of vertices is captured by a regular language
over an auxiliary alphabet Γ whereas the transition relations are represented
by automaton-definable relations over Γ ∗ (that is, subsets of Γ ∗ × Γ ∗). Some
important classes of such graphs are the class of pushdown graphs, of prefix-
recognizable graphs, of synchronized rational graphs, and of rational graphs. We
introduce monotonic counters in this context, by attaching vectors of natural
numbers to vertices, and observe that, for prefix-recognizable graphs, the result-
ing graphs, in general, are not prefix-recognizable anymore. As second result, we
show that adding monotonic counters to a synchronized rational graph yields
again a synchronized rational graph.

Regarding decidability, we observe that there is a prefix-recognizable graph
(even a finite graph) such that the extension of this graph by monotonic counters
yields a graph with undecidable monadic second-order theory. Nevertheless, we
are able to show that the reachability problem for the extension of any prefix-
recognizable graph by monotonic counters remains decidable, which might be of
interest in the verification of infinite-state systems.

The outline of this paper is as follows. We fix our notations in Sect. 2 and re-
call the definition of Parikh automata as introduced in [10]. In Sect. 3 we extend
the idea of Parikh automata to the automaton classes in the Chomsky hierar-
chy and show our first result concerning the language recognition power of the
resulting automata. In Sect. 4 we introduce the notion of the monotonic-counter
extension of transition graphs, starting from the idea of Parikh automata, and
show our second result regarding this extension. Section 5 is addressed to the de-
cidability of the reachability problem mentioned above. We conclude with Sect. 6
by giving some final remarks and further perspectives, in particular regarding
the more general case of reversal-bounded counters.

1 Linear-bounded Turing machines
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2 Preliminaries

We denote the set of natural numbers by IN and the set of vectors of natural
numbers of dimension n ≥ 1 by INn. For a vector x̄ ∈ INn, we denote its i-th
component by (x̄)i. For A ⊆ INn, we define the set (A)i := {(x̄)i | x̄ ∈ A}. The
i-th unit vector in INn, denoted by ēi, is the one with the i-th component equal
to 1 and all the other components equal to 0. The zero vector of dimension n is
denoted by 0̄.

Let x̄ and ȳ be vectors of dimension n ≥ 1, and let k be a natural number. We
define the vector addition x̄+ ȳ and the scalar multiplication kx̄ componentwise.
For A,B ⊆ INn, we define A + B := {x̄ + ȳ | x̄ ∈ A and ȳ ∈ B}.

Recall that a set A ⊆ INn, n ≥ 1, is said to be linear if there are vectors
x̄0 ∈ INn (the constant vector) and x̄1, . . . , x̄m ∈ INn (the periods), for some
m ≥ 0, such that

A = {x̄0 + k1x̄1 + . . . + kmx̄m | k1, . . . , km ∈ IN} .

The set A ⊆ INn is said to be semi-linear if it is a finite union of linear sets.
Let Σ = {a1, . . . , an}, n ≥ 1, be an alphabet. The Parikh mapping Φ : Σ∗ →

INn is defined by Φ(w) := (|w|a1 , . . . , |w|an), for each w ∈ Σ∗, where |w|a denotes
the number of occurrences of a ∈ Σ in w. Parikh’s theorem [14] asserts that the
Parikh image (that is, the image under the Parikh mapping) of any context-free
language is semi-linear linear and effectively constructible (or effectively semi-
linear, for short).

The idea underlying a Parikh automaton is the following. We assign a vector
of natural numbers, say, of (fixed) dimension n ≥ 1 to each transition of a finite
automaton. Then, at the end of a computation (run) the sum of the vectors
associated with the transitions occurring in the computation is checked against a
constraint given as a semi-linear set. In this view, the underlying finite automaton
is equipped with n-many monotonic counters, which may be incremented each
time an input symbol is read, and with the possibility to check the final values
of these counters against a semi-linear constraint.

Formally, a Parikh automaton of dimension n ≥ 1 over Σ is a system (A, C)
where A is a finite automaton over an extended alphabet of the form Σ × D,
for some finite, nonempty set D ⊆ INn (the auxiliary set), and C ⊆ INn (the
constraint set) is a semi-linear set. We define the Σ-projection Ψ : (Σ ×D)∗ →
Σ∗, mapping (u1, d̄1) · · · (um, d̄m) to u1 · · ·um ∈ Σ∗, and the extended Parikh
mapping Φ̃ : (Σ×D)∗ → INn, mapping (u1, d̄1) · · · (um, d̄m) to d̄1+· · ·+d̄m ∈ INn.
Now, the acceptance of a word u1 · · ·um ∈ Σ∗ by the Parikh automaton requires
two conditions. First, there must be some vectors d̄1, . . . , d̄m ∈ D such that the
word (u1, d̄1) · · · (um, d̄m) is accepted by A. Second, the sum of these vectors
must belong to C. To sum up, we define the language recognized by (A, C) as
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L(A, C) := {Ψ(w) | w ∈ L(A) and Φ̃(w) ∈ C} .

The following proposition is an extension of Parikh’s theorem.

Proposition 1 (Klaedtke and Rueß [10]). Let Σ be an alphabet and let D
be a finite, nonempty subset of INn, n ≥ 1. If the Parikh image of a language
L ⊆ (Σ ×D)∗ is (effectively) semi-linear, then so is its extended Parikh image.

3 Parikh Automata and the Chomsky Hierarchy

The definition of a Parikh automaton in the preceding section allows us to use
any automaton model for the underlying automaton instead of a finite automa-
ton. Using the well-known automaton models of the Chomsky hierarchy, we ob-
tain Parikh pushdown automata (Parikh-PDA), Parikh linear-bounded automata
(Parikh-LBA), and Parikh Turing machines (Parikh-TM ). To avoid confusion,
we also refer to the Parikh automata of Klaedtke and Rueß (with finite automata
as the underlying automata) as Parikh finite automata (Parikh-FA). Obviously,
a finite automaton is equivalent to a Parikh-FA; the corresponding Parikh-FA
just does not make use of its counters. Similar fact holds for PDA’s, LBA’s, and
TM’s as well.

It is not difficult to construct a Parikh-FA that recognizes the language
{akbkck | k ≥ 0}, which is not context-free. Consequently, Parikh-FA’s and
Parikh-PDA’s are more powerful than finite automata and pushdown automata,
respectively. In contrast, we show that any Parikh-LBA can be simulated by
an LBA. Furthermore, we show that the class of Parikh-PDA-recognizable lan-
guages is properly contained in the class of context-sensitive languages.

Theorem 2. Each Parikh-LBA is equivalent to an LBA.

Proof. Let (M, C) be a Parikh-LBA of dimension n ≥ 1 over Σ with the auxiliary
set D ⊆ INn. We construct a TM M′ over Σ that recognizes L(M, C) and show
that the amount of space used by M′ in any computation is linear in the length
of its input, which implies that M′ is indeed an LBA.

The TM M′ works as follows. Given an input word u := u1 · · ·um ∈ Σ,
m ≥ 0, we first guess the vectors d̄1, . . . , d̄m ∈ D nondeterministically and
maintain the sum x̄ of these vectors somewhere in the working tape (with a
unary representation described below). Then, we simulate the computation of
M on (u1, d̄1) · · · (um, d̄m). If M accepts, then it remains to check whether the
vector x̄ belongs to C.

Without loss of generality, we assume that C is linear since, otherwise, we can
nondeterministically choose one of the finitely many linear sets that constitute C
to work with. Let x̄0 be the constant vector and x̄1, . . . , x̄r be the periods of C.
First, we subtract x̄0 from x̄. Then, one by one, we nondeterministically choose
a period x̄j and subtract it from x̄. If x̄ belongs to C, then it will eventually
become the zero vector, whereupon we go to an accepting state.

We turn to analyzing the amount of space used by M′ to accept an input
word u ∈ L(M, C). Simulating M requires only linear space since M is an LBA.
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Thus, the critical point in the construction above lies in how much space is
needed to maintain the vector x̄ and to check whether x̄ belongs to C. For the
former task, we will use a unary representation of the vector x̄. Then, the latter
task does not need extra space since we only subtract some vectors from x̄ and
do not add some to x̄. For the unary representation of x̄, we use the word

|1 · · · |1︸ ︷︷ ︸
(x̄)1-times

$ · · · $ |n · · · |n︸ ︷︷ ︸
(x̄)n-times

,

where |1, . . . , |n, and $ are new symbols. Let t be the greatest natural number
occurring in D, that is, t := max{(d̄)i | d̄ ∈ D and 1 ≤ i ≤ n}. Since each input
symbol contributes at most t to each component of x̄, it is not difficult to see that
the length of the unary representation of x̄ can be bounded by n · t · |u|+ n− 1,
which is linear in |u| since n and t are fixed (the term n−1 represents the number
of $’s). Hence, we conclude that M′ is indeed an LBA. ��

Note that the idea of the proof of Theorem 2 above applies to the case of
Parikh-TM as well.

Corollary 3. Each Parikh-TM is equivalent to a TM.

Theorem 2 and Corollary 3 imply that we do not need to introduce new
language classes in order to capture Parikh-LBA’s and Parikh-TM’s. In the
following, we classify the Parikh-FA-recognizable and Parikh-PDA-recognizable
languages in the Chomsky hierarchy. The results are summarized in Fig. 1, where
each solid edge pointing to the right indicates a strict inclusion. For simplicity,
we denote the language classes by the corresponding automaton classes.

FA
Parikh-FA

PDA
TMLBAParikh-PDA

Fig. 1. Hierarchy of language classes

Clearly, any Parikh-FA can be simulated by a Parikh-PDA, which in turn can
be simulated by a Parikh-LBA (and thus, by Theorem 2, also by an LBA). These
facts justify the inclusion relations shown in Fig. 1. Moreover, these inclusions
are strict. As noted before, the non-context-free language {akbkck | k ≥ 0} is
Parikh-FA-recognizable. On the other hand, one can show that the context-free
language {wwR | w ∈ {a, b}∗} is not Parikh-FA-recognizable2. The strictness
of the inclusion between Parikh-PDA’s and LBA’s follows from Proposition 4

2 Actually, the proof of this fact is merely a slight modification of the proof that the
language {ww | w ∈ {a, b}∗} is not Parikh-FA-recognizable, as presented in [10]. For
further details, the reader is referred to [9, pages 31–33]
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below, which states that the Parikh image of any Parikh-PDA-recognizable lan-
guage is semi-linear, and from the fact that there is a context-sensitive language
whose Parikh image is not semi-linear; for instance, it is straightforward to show
that the language {akbk2 | k ≥ 0} is context sensitive, but its Parikh image is
not semi-linear (see [9, pages 56 and 66–67]).

Proposition 4. The Parikh image of any Parikh-PDA-recognizable language is
effectively semi-linear.

Proof (sketch). We use the extended Parikh mapping to ‘simulate’ the Parikh
mapping by means of some additional dimensions.

Given a Parikh-PDA (A, C) of dimension n over Σ := {a1, . . . , am}, we
extend it to a new Parikh-PDA (B, C′) of dimension n + m that recognizes
the same language as (A, C) and counts the number of occurrences of the input
symbols by using the additional dimensions. Roughly speaking, the idea is to
associate each transition in which ai is involved with the unit vector ēi. Then,
the vector accumulated at the end of a computation contains the number of
occurrences of the input symbols in the last m components. The set of such m-
dimensional vectors can be extracted from the extended Parikh image of L(B)
by using the projection functions. The semi-linearity of this set then follows
from the semi-linearity of L(B) (Proposition 1) and the closure of semi-linear
sets under the Boolean operations and the projection functions [5]. ��

Corollary 5. The class of Parikh-PDA-recognizable languages is properly con-
tained in the class of context-sensitive languages.

4 Monotonic-Counter Extensions of Transition Graphs

Let Σ be an alphabet. A Σ-labeled (transition) graph is a structure G :=
(V, (Ea)a∈Σ), where V is the set of vertices, and Ea ⊆ V × V , for each a ∈ Σ,
is the set of a-labeled edges of G. The set of all edges of G is denoted by
E :=

⋃
a∈Σ Ea.

Although the graph G under consideration might be infinite, we require that
it has a finite representation; the set V of vertices is given by a regular language
over an auxiliary alphabet, say Γ , and the set Ea of a-labeled edges, for each
a ∈ Σ, is given by a binary relation over Γ ∗, which is, more or less, definable
by an automaton. Some well-known classes of such graphs, with respect to how
the edge relations are defined, are pushdown graphs, prefix-recognizable graphs,
synchronized rational graphs, and rational graphs, where the edge relations are
defined by ε-free pushdown transitions, prefix rewriting rules, synchronized ra-
tional relations, and rational relations, respectively. Moreover, it is known that
these classes constitute a strict increasing chain of inclusions. For an introduction
to these graph classes, the reader is referred to [18].

Note that in the sequel we do not distinguish Σ-labeled graphs up to isomor-
phism; we consider two isomorphic Σ-labeled graphs to be the same. For conve-
nience, we denote the class of finite graphs, pushdown graphs, prefix-recognizable
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graphs, synchronized rational graphs, and rational graphs by GFin, GPD, GPR,
GSR, and GRat, respectively.

We apply the idea of Parikh automata as follows. First, we use an extended
alphabet of the form Σ ×D, for some finite, nonempty set D ⊆ INn, n ≥ 1, for
the edge labeling, thereby obtaining a (Σ×D)-labeled graph. If we now take into
consideration the vectors that are accumulated along a path and code them as
monotonic counters (represented by vectors of natural numbers) in the vertices,
the vector component of any edge label can be reconstructed from the vectors
of the vertices that are incident on this edge. Thus, we may omit the vector
component of the edge labels. In this way, we get back to a Σ-labeled graph.

Definition 6. Let Σ be an alphabet, and let D (called the auxiliary set) be a
finite, nonempty subset of INn, n ≥ 1. Let G := (V, (E(a,d̄))(a,d̄)∈Σ×D) be a (Σ×
D)-labeled graph. The Σ-labeled monotonic-counter extension ( of dimension n)
of G (with respect to D) is the Σ-labeled graph G̃ := (Ṽ , (Ẽa)a∈Σ) with Ṽ :=
V × INn and

Ẽa := {((α, x̄), (β, ȳ)) ∈ Ṽ × Ṽ | ∃d̄ ∈ D : (α, β) ∈ E(a,d̄) and ȳ = x̄ + d̄} ,

for each a ∈ Σ. The set of all edges of G̃ is denoted by Ẽ :=
⋃

a∈Σ Ẽa.
For a class G(Σ) of Σ-labeled graphs, the class GMC(Σ) precisely contains the

Σ-labeled graphs in G(Σ) and their (Σ-labeled) monotonic-counter extensions.
We will omit Σ whenever it is clear from the context. Occasionally, we refer to a
graph that is obtained by a monotonic-counter extension simply as a monotonic-
counter graph.

Example 7. The infinite two-dimensional grid (see [18, page 134]) can be cap-
tured as the following monotonic-counter graph. Let Σ := {a, b} and D :=
{(1, 0), (0, 1)}. We define the (Σ × D)-labeled finite graph Ggrid depicted in
Fig. 2 (left). Then, the monotonic-counter extension of Ggrid is the graph G̃grid =
(Ṽ , Ẽa, Ẽb) with Ṽ := {(•, (i, j)) | i, j ∈ IN}, Ẽa := {((•, (i, j)), (•, (i + 1, j))) |
i, j ∈ IN}, and Ẽb := {((•, (i, j)), (•, (i, j + 1))) | i, j ∈ IN}. The graph G̃grid is
illustrated in Fig. 2 (right), where, for better readability, the symbol • has been
omitted.

Starting from the class GFin of finite graphs, we obtain the class GFMC. Anal-
ogously, from the graph classes mentioned above we obtain the classes GPDMC,
GPRMC, GSRMC, and GRMC. Moreover, these classes constitute an increasing chain
of inclusions as the underlying graph classes also do.

By definition, we have G ⊆ GMC, for any class G of Σ-labeled graphs.
For prefix-recognizable graphs, the converse does not hold; the infinite two-
dimensional grid of Example 7 is known to have an undecidable monadic second-
order theory and thus is not prefix-recognizable [18, Theorem 8 and Theorem
10]. However, the converse holds for synchronized rational graphs and for ra-
tional graphs. Towards showing this result, we briefly recall the definitions of
synchronized rational and rational graphs. For further references, the reader is
referred to [18, pages 133–135].
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Fig. 2. The graph Ggrid (left) and G̃grid (right) of Example 7

Let Γ be an alphabet, and let $ be a new symbol. For convenience, we write
Γ� for Γ ∪{$}. For any words α = X1 · · ·Xm and β = Y1 · · ·Yn over Γ , we define
αˆβ :=

[X′
1

Y ′
1

]
· · ·

[X′
k

Y ′
k

]
, a word of length k := max(m,n) over Γ� × Γ�, where

X ′
i := Xi, for i ≤ m, and X ′

i := $, otherwise; similarly, Y ′
j := Yj , for j ≤ n, and

Y ′
j := $, otherwise. We assign to a relation R ⊆ Γ ∗ × Γ ∗ the language

LR := {αˆβ | (α, β) ∈ R} ⊆ (Γ� × Γ�)∗ .

The relation R is called synchronized rational if LR is regular. Intuitively, a
finite automaton recognizing LR can be seen as a finite automaton with two
one-way input tapes, each with its own input head, which may only be moved
simultaneously. The special symbol $ is needed to deal with the case where the
two words under consideration are of different length.

The automaton characterization of synchronized rational relations carries
over to rational relations; a relation R ⊆ Γ ∗ × Γ ∗ is called rational if LR is
recognized by a finite automaton with two one-way input tapes, each with its
own input head, which may be moved independently from each other.

Let Σ be an alphabet. A Σ-labeled (synchronized) rational graph is a graph
G = (V, (Ea)a∈Σ) where V ⊆ Γ ∗ is regular, for some alphabet Γ , and Ea is
(synchronized) rational, for each a ∈ Σ.

Theorem 8. The monotonic-counter extension of a synchronized rational graph
is a synchronized rational graph.

Proof. Let Σ be an alphabet and D be a finite, nonempty subset of INn, n ≥ 1.
Let G̃ = (Ṽ , (Ẽa)a∈Σ) be the monotonic-counter extension of the synchronized
rational graph G = (V, (E(a,d̄))(a,d̄)∈Σ×D), where V ⊆ Γ ∗ is regular, for some
alphabet Γ , and E(a,d̄) is synchronized rational, for each (a, d̄) ∈ Σ×D; that is,
each LE(a,d̄)

is recognizable by a finite automaton with two one-way input tapes

and simultaneously moving input heads, say by A(a,d̄). In order to show that G̃
is synchronized rational, we need to find a synchronized rational graph that is
isomorphic to G̃.
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First of all, we need to code the vertices of G̃, each of which consists of a word
over Γ and a vector of dimension n. Let Π := Γ ∪ {|1, . . . , |n}, where |1, . . . , |n
are new symbols, which will be used to code vectors of dimension n as follows.
Each vector (x1, . . . , xn) ∈ INn is represented by the word f(x1, . . . , xn) :=
|x1
1 · · · |xn

n . Using this coding, we now define a coding function for the vertices
of G̃. Let h : V × INn → (|∗1 · · · |∗n)V be defined by h(α, x̄) := f(x̄)α, for each
α ∈ V and x̄ ∈ INn. Clearly, both f and h are bijective, and thus, the graph
G′ := (V ′, (E′

a)a∈Σ) with

V ′ := (|∗1 · · · |∗n)V ,

E′
a := {(h(α, x̄), h(β, ȳ)) ∈ V ′ × V ′ | ((α, x̄), (β, ȳ)) ∈ Ẽa}

is isomorphic to G̃. The task is now to show that G′ is synchronized rational.
Clearly, the set V ′ of vertices of G′ is regular since V is regular. It remains

to show that the edge relation E′
a is synchronized rational, for each a ∈ Σ. For

each edge relation E′
a, we define a finite automaton A′

a with two one-way input
tapes and simultaneously moving input heads which works as follows. Let two
vertices f(x̄)α and f(ȳ)β of G′ be given.

– First, we guess a vector d̄ ∈ D.
– Then, we check whether x̄+d̄ = ȳ. Note that, for this purpose, the automaton

must be able to perform a kind of ‘shifted reading’ since the input heads
may only be moved simultaneously on both input tapes. To illustrate this,
consider the following example. Let α := ab, β := b, x̄ := (1, 2), and ȳ :=
(3, 3). Then, we have h(α, x̄)ˆh(β, ȳ) =

[ |1
|1

][ |2
|1

][ |2
|1

][ a
|2
][

b
|2
][ �

|2
][ �

a

]
. In this

example, while we are still working on the first component of the vectors
(represented by sequences of |1’s), we must already deal with the second
component of the vectors (represented by sequences of |2’s), and similarly,
while we are still working with the second component of the vectors, we
must already deal with the Γ -components. Since D and Γ are finite (and n
is fixed), we need only use a finite memory. In particular, we must remember
the differences between x̄ and ȳ (that is, the vector d̄) in each component.

– Finally, after verifying that x̄+ d̄ = ȳ, we just simulate the automaton A(a,d̄),
checking whether (α, β) ∈ E(a,d̄).

It is now straightforward to see that A′
a indeed recognizes LE′

a
. Thus, E′

a is
synchronized rational, for each a ∈ Σ, and consequently, G′ (and thus also G̃)
is indeed a synchronized rational graph. ��

The proof idea above can also be applied to the monotonic-counter extensions
of rational graphs; the construction of the automata for the edge relations is even
easier since the input heads may be moved independently from each other.

Corollary 9. The monotonic-counter extension of a rational graph is a rational
graph.

Consequently, the classes GSR and GRat coincide with the classes GSRMC and
GRMC, respectively. The class GPRMC is contained in GSRMC (and thus also in



Adding Monotonic Counters to Automata and Transition Graphs 317

GSR) since GPR is contained in GSR. Moreover, this inclusion is strict since GSR

contains graphs for which the reachability problem is undecidable [18, Theorem
9] while GPRMC does not (see Sect. 5 below). Obviously, the class GPRMC in turn
subsumes the classes GPR and GPDMC. These inclusions are also strict; on the one
hand, the infinite two-dimensional grid of Example 7 belongs to GPDMC, but not
to GPR; on the other hand, since pushdown graphs are of bounded degree and
since the auxiliary sets under consideration are always finite, the class GPDMC

only contains graphs of bounded degree, which does not hold for GPR (see [18,
pages 132–133]).

These (and some other) hierarchy results are summarized in Fig. 3, where
each solid edge pointing to the right indicates a strict inclusion. For simplicity,
we write, for instance, FMC instead of GFMC. The proofs are straightforward
and can be found in [9, pages 113–118].

FMC PDMC

PD PR
Fin PRMC SR Rat

Fig. 3. Hierarchy of graph classes

5 Reachability Problem

A fundamental question in the field of model checking is the reachability problem.
For prefix-recognizable graphs, this problem is decidable whereas it is undecid-
able for synchronized rational graphs. Regarding the former graphs, we show
that the monotonic-counter extension preserves the decidability of the reacha-
bility problem.

To be precise, we consider the following reachability problem. Let Σ and Γ
be alphabets, and let D be a finite, nonempty subset of INn, n ≥ 1. Let G be a
(Σ ×D)-labeled prefix-recognizable graph with regular set V ⊆ Γ ∗ of vertices.
Then, the reachability problem for G̃, the monotonic-counter extension of G, is
the question: “Given two regular sets U,U ′ ⊆ V of vertices in G, and given two
semi-linear sets C,C′ ⊆ INn, are there vertices (α, x̄) ∈ U×C and (β, ȳ) ∈ U ′×C′

in G̃ such that (β, ȳ) is reachable from (α, x̄)?”
Towards our result, we will need the following lemma, stating that the traces3

of prefix-recognizable graphs, with regular sets of initial and final vertices, are
context-free. Actually, this lemma is a corollary of the fact that each prefix-
recognizable graph is the ε-closure of the configuration graph of a pushdown
automaton [17] (a constructive proof can be found in [12]).

Lemma 10 (Caucal [2]). The traces of any Σ-labeled prefix-recognizable graph
yield a context-free language over Σ, which is effectively constructible.

3 For the definition of the traces of transition graphs, the reader might consult [18]
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In order to show the decidability of the reachability problem for the mono-
tonic-counter extensions of prefix-recognizable graphs we reduce this problem to
the emptiness problem for semi-linear sets, which is known to be decidable.

Theorem 11. The reachability problem for the monotonic-counter extension of
any prefix-recognizable graph is decidable.

Proof. Let Σ be an alphabet and D be a finite, nonempty subset of INn, n ≥ 1.
Let G̃ be the monotonic-counter extension of the prefix-recognizable graph G =
(V, (E(a,d̄))(a,d̄)∈Σ×D), where V ⊆ Γ ∗ is regular, for some alphabet Γ . Now, let
U,U ′ ⊆ V be regular sets of vertices in G, and let C,C′ ⊆ INn be semi-linear
sets. By Lemma 10, the traces of G, with U as the set of initial vertices and U ′

as the set of final vertices, yield effectively a context-free language L over Σ×D.
Then, by Parikh’s theorem and Proposition 1, the extended Parikh image of L
(denoted by Φ̃(L)) is effectively semi-linear.

It is straightforward to show that the following statements are equivalent:

1. There are some vertices (α, x̄) ∈ U ×C and (β, ȳ) ∈ U ′ × C′ in G̃ such that
(β, ȳ) is reachable from (α, x̄).

2. (C + Φ̃(L)) ∩ C′ �= ∅.

By the effective closure of semi-linear sets under addition (this property is
straightforward to verify) and intersection [5], the set (C + Φ̃(L)) ∩ C′ is ef-
fectively semi-linear, and hence, the emptiness problem for this set is decidable.
Consequently, it is decidable whether the first statement above holds, which in
turn implies the decidability of the reachability problem for G̃. ��

6 Conclusions

We have drawn the boundary where the idea of Parikh automata, which corre-
sponds to the extension of automata by monotonic counters, properly increases
the language recognition power of the automaton classes of the Chomsky hierar-
chy. While this statement is true for finite automata and pushdown automata, it
does not hold for linear-bounded automata and Turing machines. Likewise, we
showed that adding monotonic counters to synchronized rational graphs does
not go beyond the scope of synchronized rational graphs whereas for prefix-
recognizable graphs one obtains a new class of transition graphs. Nevertheless,
for the latter we showed that the reachability problem remains decidable.

A natural next step towards extending the present results, which is also a
subject of our current work, is to consider the case of reversal-bounded counters
[7] instead of monotonic counters. For this case, some technical preparations on
the definitions are needed, in particular in order to connect the model of Parikh
automata with the model of reversal-bounded counter machines carefully. For
the former model, for instance, a constraint on the values of the counters (via
semi-linear sets) occurs only at the end of computations whereas for the latter
model intermediate tests are allowed. A first contribution to this issue has been
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done by Klaedtke and Rueß [10], showing that (finite-state) Parikh automata and
reversal-bounded counter machines are equivalent. Another direction is to extend
the arithmetical conditions under consideration beyond the scope of semi-linear
sets.
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Abstract. For each language L, let F̂∩(L) be the smallest intersection-
closed full AFL generated by the language L. Furthermore, for each natu-

ral number k ≥ 2 let Pk = {ank |n ∈ N}. By applying certain classical and
recent results on Diophantine equations we show that LRE = F̂∩(Pk),
i.e., the family of all recursively enumerable languages coincides with the
smallest intersection-closed full AFL generated by the polynomial lan-
guage Pk for all k ≥ 2. This allows us to answer to an open problem of
S. Ginsburg and J. Goldstine in [2].

1 Introduction

The creators of formal language theory studied intensively simple generators
of classical Chomsky hierarchy language families, especially those of recursively
enumerable languages. The role of the language DUP = {anbn | n ∈ N} appeared
to be crucially important. Certainly DUP is a one-counter context-free language
which, in the basic language theory courses serves as the first example of a
nonregular set. Anyhow in [3] it was shown that F̂∩(DUP ) coincides with the
family LRE of all recursively enumerable languages. Since then, to prove that
F̂∩(L) contains all r.e. languages, it became a common practise to show that
DUP ∈ F̂∩(L). Ginsburg and Goldstine studied one-letter generators of LRE in
[2]; they proved, among other deep things that

• DUP ∈ F̂∩(L) for each infinite language L = {ani | i ∈ N} such that

lim infi→∞
ni+1

ni
> 1 ; and

• DUP /∈ F̂∩(L) for each language L ⊆ a∗ such that

limn→∞
|{ai | ai ∈ L, 0 ≤ i < n}|

n
= 1 .

Recall that all one-letter context-free languages are regular. This means that a
one-letter generator of LRE cannot be context-free. The first of the items above
can be interpreted so that if a one-letter language is sparse enough, it generates
all r.e. languages. For instance each exponential language EXPk = {akn | n ∈ N}
with integer base k ≥ 2 satisfies its condition. On the other hand, the latter result
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says that if L ⊆ a∗ is appropriately thick, then LRE is not a subset of F̂∩(L). The
complement a∗\Pk of the polynomial language Pk (for each k ∈ {2, 3, ...}) is then
certainly not a generator of r.e. languages with respect to the full AFL operations
and intersection. Ginsburg and Goldstine left open the question whether or not

LRE = F̂∩(Pk) (1)

is true when k ∈ {2, 3, ...}. We attack the problem with a simple reduction of
language-theoretic problems to (systems of) Diophantine equations.

Andrew Wiles’s celebrated proof of Fermat’s Last Theorem in 1995 [7] brought
on solutions to other difficult Diophantine equations resembling xn+yn = zn. H.
Darmon H. and L. Merel showed in [1] that the xn + yn = 2 zn has no solutions
for integers n, x, y, z such that x �= y and n ≥ 3. A straightforward application of
this fact shows that (1) holds true for integers k ≥ 3. To prove that (1) is valid
also for k = 2, we make use of parametric solutions to Diophantine equations of
the type a x2 + b y2 = c y2 presented in [5].

In [6] some more sophisticated generators of LRE are considered. Turakainen
proves that Ĉ∩(PROD), the smallest intersection closed full trio generated by
PROD = {anbncn m|n,m ∈ N}, contains all recursively enumerable one-letter
languages. For the sets REP = {(anb)m| n,m ∈ N} and BREP = {(anb)n| n ∈
N} the relations

Ĉ∩(DUP ) � Ĉ∩(PROD) � Ĉ∩(BREP ) ⊆ Ĉ∩(REP ) (2)

are as well verified in [6]. Whether the last inclusion is an equality remained
open. We prove that REP is in Ĉ∩(BREP ), thus verifying that Ĉ∩(BREP ) =
Ĉ∩(REP ).

2 Basic Definitions

Denote by N the set of all natural numbers, by Z the set of all integers and by
Q the set of all rational numbers.

For each finite set S, let |S| be the number of elements in S.
Let X be a finite alphabet and let X∗ be the free monoid generated by X .

As usual, the elements of X∗ are words, the subsets of X∗ are languages. Let
w ∈ X∗ be such that w = x1x2 · · ·xn where n is a nonnegative integer and
xi ∈ X for i = 1, 2, · · · , n. The number n is the length of x, denoted by |x|. If
n = 0, then w is the empty word e. For each y ∈ X∗ and a ∈ X , let |w|a be the
number of occurrences of the symbol a in w. A language L is e-free if it does
not contain the empty word. The language operation shuffle, denoted by shuf ,
between two languages L1 and L2 over the alphabet X is defined by

shuf(L1, L2) = {u1v1u2v2 · · ·unvn| n ∈ N, ui, vi ∈ X∗ for i = 1, 2, . . . n,
u1u2 · · ·un ∈ L1, v1v2 · · · vn ∈ L2} .

A family of languages is any set of languages containing at least one nonempty
element. A (full) trio is a family of languages closed under nonerasing mor-
phism (arbitrary morphism), inverse morphism and intersection with regular
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sets. A (full) trio closed under union, concatenation and Kleene+ is a (full)
AFL (acronym for Abstract Family of Languages).

For each language L, let

• C∩(L) be the smallest intersection-closed trio
• F∩(L) be the smallest intersection-closed AFL
• Ĉ∩(L) be the smallest intersection-closed full trio
• F̂∩(L) be the smallest intersection-closed full AFL

containing (or generated by) the language L.
It is easy to see that each

• trio is closed under union with an e-free regular sets; and
• intersection closed trio is also closed under shuffle-operation.

3 LRE = F̂∩(Pk) for Each k ≥ 3

In [4] we showed that DUP is in C∩(EXP2). The purpose of this and the fol-
lowing section is to establish that the previous relation remains true if the expo-
nential language is replaced with any Pk such that k ∈ {2, 3, . . .}. The following
lemma straightforwardly implies the main result of this section.

Lemma 1. For each integer k ≥ 3, the language DUP is in C∩(Pk).

Proof. Let k ≥ 3 be an integer and Tk = {a2nk | n ∈ N}. Clearly Tk ∈ C∩(Pk).
Moreover, let h1, h2 and h3 be three morphisms from {a, b}∗ into {a}∗ defined
by

h1(a) = a, h1(b) = e
h2(a) = e, h2(b) = a
h3(a) = a, h3(b) = a .

The language Qk = h−1
1 (Pk) ∩ h−1

2 (Pk) ∩ h−1
3 (Tk) is certainly in C∩(Pk). Let

w ∈ Qk, i = |w|a and j = |w|b. By the above construction, there exist n,m, r ∈ N
such that i = nk, j = mk and i+ j = 2 rk. We thus have nk +mk = 2 rk. By the
result of Darmon and Merel in [1], the equalities n = m = r hold. Obviously

Qk = {w ∈ {a, b}∗| |w|a = |w|b = nk for some n ∈ N} .

Let g and h be morphisms: {a, b, c}∗ → {a, b}∗ satisfying

g(c) = aab, g(a) = a, g(b) = b
h(a) = a, h(c) = a, h(b) = b .

It is quite straightforward to see that the language Sk = h(g−1(Qk)) ∩ a∗b∗ is a
subset of DUP such that DUP \Sk is finite. Since certainly Sk is in C∩(Pk), we
deduce that also DUP is in C∩(Pk). ��

By the previous lemma, DUP ∈ F̂∩(Pk) for each k ≥ 3. The result of Hart-
manis and Hopcroft in [3] immediately implies
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Theorem 1. LRE = F̂∩(Pk) for each k ≥ 3.

Remark 1. The case k = 2 was not considered in Lemma 1. The reason is that
the Diophantine equation x2 + y2 = 2 z2 has also other integer solutions than
those with the property |x| = |y| = |z|.

4 LRE = F̂∩(P2)

Consider the system of Diophantine equations{
x2 + y2 = 2 z2

x2 + 2 y2 = 3 u2
(3)

over the field of rationals. We wish to determine the integer solutions of (3), i.e.,
quadruples (x0, y0, z0, u0) ∈ Z4 such that x2

0+y2
0 = 2 z2

0 and x2
0+2 y2

0 = 3 u2
0. Call

a solution (x0, y0, z0, u0) proper if (x0, y0, z0, u0) �= (0, 0, 0, 0) and the integers x0,
y0 have no common divisor greater than 1. Clearly (1, 1, 1, 1) is a proper solution
of (3). When studying the formula (20) in the book of Nagell [5], page 225
we notice that each proper solution (x0, y0, z0, u0) of (3) satisfies the following
system of equations ⎧⎪⎪⎪⎨⎪⎪⎪⎩

Δ1 x0 = −u2
1 − 2 u1v1 + v2

1

Δ1 y0 = u2
1 − 2 u1v1 − v2

1

Δ2 x0 = −u2
2 − 4 u2v2 + 2 v2

2

Δ2 y0 = u2
2 − 2 u2v2 − 2 v2

2

(4)

where ui, vi are relatively prime integers and Δi denotes the greatest common
divisor of the right hand sides of the two equations containing ui and vi, i = 1, 2.
The equations of (4) imply straightforwardly{

2Δ2u1v1 = 3Δ1u2v2

Δ2 (u2
1 − v2

1) = Δ1 (u2
2 − 2 · v2

2) .
(5)

Solving x with respect to u2, v2 from the first equation of (4) and comparing it
to the value given in the third equation of the same system allows us to deduce
that either u2 or v2 is equal to zero. This implies that |x0| = |y0| = |z0| = |u0|.
Since each solution of (4) is a integer multiple of a proper one, the following
holds true.

Theorem 2. The quadruple (x0, y0, z0, u0) ∈ Z4 is an integer solution of the
system of Diophantine equations (3) if and only if |x0| = |y0| = |z0| = |u0|.

The remaining part of our considerations proceeds as in the previous section.

Lemma 2. The language DUP is in C∩(P2).
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Proof. Suppose that a, b, , b1, b2 are distinct symbols. The languages

L1 = {w ∈ {a, b}∗ | |w|a = m2, |w|b = n2 for some m,n ∈ N}
L2 = {a2 r2 | r ∈ N}
L3 = {a3 s2 | s ∈ N}

are surely in C∩(P2). Let h1 : {a, b}∗ → {a, b1, b2}∗ and g1, g2 : {a, b1, b2}∗ →
{a}∗ be the morphisms defined by

h1(a) = a, h1(b) = b1b
2
2

g1(a) = a, g1(b1) = a, g1(b2) = e
g2(a) = a, g2(b1) = e, g2(b2) = a .

The language L4 = h1(L1) ∩ g−1
1 (L2) ∩ g−1

2 (L2) is obviously in C∩(P2). Let w ∈
L4. By the above construction, there exist m,n, r, s ∈ N such that |w|a = m2,
|w|b1 = n2, |w|b2 = 2n2, m2 + n2 = 2 r2 and m2 + 2n2 = 3 s2. By Theorem 2,
we have m = n = r = s. Then certainly

L4 = {w ∈ {a, b1b2
2}∗| |w|b1 = |w|a = nk, |w|b2 = 2 |w|a = 2nk for some n ∈ N}.

Let g3 : {a, b}∗ → {a, b1, b2}∗ be the morphisms defined by g3(a) = a, g3(b) =
b1b

2
2a. Then the language

L5 = g−1
3 (L4) = {w ∈ {a, b}∗ | |w|a = |w|b = n2 for some n ∈ N}

is in C∩(P2). As in the previous section, let g and h be morphisms: {a, b, c}∗ →
{a, b}∗ defined by

g(c) = aab, g(a) = a, g(b) = b
h(a) = a, h(c) = a, h(b) = b .

It is quite easy to see that the language L6 = h(g−1(L5))∩a∗b∗ is equal to DUP .
Since L6 is in C∩(Pk), we are through. ��

Theorem 3. LRE = F̂∩(P2).

Remark 2. To prove Lemma 1 only one Diophantine equation was needed; the
integer solutions of the Diophantine equation xk + yk = 2 zk satisfy |x| = |y| =
|z|. For the proof of Lemma 2 we apply two ‘independent’ Diophantine equations
xk + yk = 2 zk and xk + 2 yk = 3 zk. Together they guarantee that their integer
solutions necessarily satisfies |x| = |y| = |z|.

5 Ĉ∩(BREP ) = Ĉ∩(REP )

Let a, b, c, a1, b1, c1, a2, b2, c2 be distinct letters in an alphabet. Define

REP = {(anb)m | m,n ∈ N}
BREP = {(anb)n | n ∈ N} and
BREPi = {(an

i bi)m | n ∈ N} for i = 1, 2, 3.

We have the following
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Theorem 4. Ĉ∩(BREP ) = Ĉ∩(REP ).

Proof. By Theorem 4 of [6] the inclusion Ĉ∩(BREP ) ⊆ Ĉ∩(REP ) holds. We now
show that REP ∈ Ĉ∩(BREP ). Since Ĉ∩(BREP ) is closed under intersection,
it is closed under shuffle-operation. Thus the languages L1 and L2 below are in
Ĉ∩(BREP ).

L1 = BREP1 ·BREP2 = {(an
1 b1)n(am

2 b2)m | n,m ∈ N} ; and
L2 = shuf(L1, BREP3) ∩ ((a1a3)∗a∗3b1b2)∗((a2a3)∗a∗3b2b3)∗

= {((a1a3)nam
3 b1b3)n((a2a3)man

3 b2b3)m | n,m ∈ N}

Let h be the morphism on {a1, b1, c1, a2, b2, c2}∗ defined by h(a1) = a3,
h(b1) = b1b3, h(c1) = a1a3, h(a2) = a3, h(b2) = b2b3, h(c2) = a2a3. Then
the language

L3 = h−1(L2) ∩ {a1, b1, c1}∗{a2, b2, c2}∗
= {(cn

1a
m
1 b1)n(cm

2 an
2 b2)m | n,m ∈ N}

is in Ĉ∩(BREP ). Let g be the morphism on {a1, b1, c1, a2, b2, c2}∗ defined by
g(b1) = b, g(c1) = g(a2) = g(b2) = g(c2) = e. The language

g(L3) = {(amb)n | m,n ∈ N}

is equal to REP and is certainly in Ĉ∩(BREP ). This completes the proof. ��

6 Some Open Problems

We are confined to list some questions that still remain without answer.
Even if LRE = F̂∩(Pk), we state the following

Conjecture 1. For each k ≥ 2 the language family Ĉ∩(Pk) does not contain all
recursively enumerable one-letter languages.

This is equivalent to

Conjecture 2. The language PROD is not in Ĉ∩(Pk) for any integer k ≥ 2.

A sharper version of the previous conjecture can be so stated:

Conjecture 3. For each pair of integers j, k ≥ 2 such that j �= k, the language
families C∩(Pj) and C∩(Pk) are incomparable, i.e., neither C∩(Pj) ⊆ C∩(Pk) nor
C∩(Pk) ⊆ C∩(Pk) holds.

We believe that even a stronger claim is true:

Conjecture 4. For each pair of integers j, k ≥ 2 such that j �= k, we have C∩(Pj)∩
C∩(Pk) = C∩(DUP ).

Finally an interesting research topic

Open Problem Is the language family Ĉ∩(BREP ) = Ĉ∩(REP ) a proper subset
of LRE?

The previous question is equivalent to whether or not the set Ĉ∩(BREP ) =
Ĉ∩(REP ) contains the catenation closure DUP ∗ of DUP .
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Abstract. It is known that for a regular language L and an arbitrary
language K the largest solution of the inequality XK ⊆ LX is regular.
Here we show that there exist finite languages K and P and star-free
languages L, M and R such that the largest solutions of the systems
{XK ⊆ LX, X ⊆ M} and {XK ⊆ LX, XP ⊆ RX} are not recursively
enumerable.

1 Introduction

This paper is a continuation of recent investigations of simple systems of implicit
language equations and inequalities where constants are regular languages. These
investigations aim to discover which types of systems have largest solutions reg-
ular no matter what regular constants they contain and which systems can have
largest solutions non-regular (or non-recursive) even though all constants are
regular (or even finite or star-free) languages. Known results on this topic are
surveyed in [10].

Systems of language equations and inequalities were studied mainly in con-
nection with context-free languages since these languages can be described as
components of smallest solutions of systems of explicit polynomial equations,
i.e. equations with the operations of union and concatenation. Much less at-
tention was devoted to implicit language equations. Such equations were first
considered by Conway [5], who observed that inequalities of the form E ⊆ L,
where E is a regular function of variables and L is a regular language, possess
only finitely many maximal solutions, all of them are regular and computable.

It is well known that regular languages can be characterized as components of
smallest or largest solutions of systems of explicit right-linear equations. Regular
solutions of more general systems were studied for example by Leiss [13]. For
systems of implicit right-linear inequalities, i.e. inequalities of the form

K ∪K1X1 ∪ · · · ∪KnXn ⊆ L ∪ L1X1 ∪ · · · ∪ LnXn ,

where K, K1, . . . , Kn and L, L1, . . . , Ln are constant languages, it is known
that their largest solutions are always regular provided all constant languages on
� Supported by the Academy of Finland under grant 208414
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right-hand sides are regular [12]. Moreover, if all constant languages occurring
in the system are regular, then computability of the largest solution follows from
Rabin’s results on MSO logic over infinite trees [16]; actually, the computation
of the solution is an ExpTime-complete problem [1–3].

Another result on regularity of solutions was obtained in [9], where well quasi-
orders of free monoids were used to prove that all maximal solutions are regular
for a large class of systems of inequalities where all constants are languages
recognizable by finite simple semigroups.

A common property of the positive results mentioned above is that they
can be formulated not only for single equations, but also for arbitrary finite
systems of such equations. The aim of this paper is to show that this is not
the case for inequalities of the form XK ⊆ LX , where K and L are regular
languages. As demonstrated by the author [9], if L is a regular language and
K is an arbitrary language, the largest solution of the inequality XK ⊆ LX
is regular. A related problem of regularity of largest solutions of equations of
the form XL = LX , which was formulated by Conway [5] in 1971, has recently
attracted some attention [4, 6, 7, 17] (see [8] for a survey), and it turned out [11]
that largest solutions of such equations are non-recursive even for some finite
languages L. This means that the positive result is not preserved if we combine an
inequality XK ⊆ LX with a similar inequality where the order of concatenation
is reversed. In this paper we show that the same situation as for equations
XL = LX arises when we either consider a system of two inequalities of the form
XK ⊆ LX or add to such an inequality an additional restriction on the solution
provided by a regular language. Moreover, to obtain this result it is sufficient to
consider only finite languages K and star-free languages L. On the other hand,
the complements of largest solutions of such systems of inequalities are always
recursively enumerable [15]. As in our proofs we encode the complement of an
arbitrary language computed by a Minsky machine into a largest solution, we
actually obtain for these systems the most negative possible result.

Basic notions employed in our considerations are recalled in the following
section. For a more comprehensive introduction to formal languages the reader
is referred to [18].

2 Preliminaries

We denote the sets of positive and non-negative integers by IN and IN0, respec-
tively. Throughout the paper we consider a finite alphabet A. As usual, we write
A+ for the set of all non-empty finite words over A, and A∗ for the set obtained
from A+ by adding the empty word ε. If u, v, w ∈ A∗ are words such that w = uv,
then u and v are called a prefix and a suffix of w, respectively.

Languages over A are arbitrary subsets of A∗. The basic operation on lan-
guages is concatenation defined by the rule K · L = {uv | u ∈ K, v ∈ L}, and
we use the standard notation L+ =

⋃
m∈IN Lm and L∗ = L+ ∪ {ε}. Further,

we write KL−1 for the language {u ∈ A∗ | ∃v ∈ L : uv ∈ K}. Regular languages
are languages definable by finite automata, or equivalently, by rational expres-
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sions. The basic tool for proving non-regularity of languages is the well-known
pumping lemma (see e.g. [18]). A language L ⊆ A∗ is called star-free if it can be
obtained from finite languages using the operations of union, complementation
and concatenation; in particular, for every B ⊆ A, the languages B+ and B∗

are star-free, and if B,C ⊆ A are disjoint subalphabets of A, then (BC)+ is
a star-free language as well.

3 Systems with Inequalities XK ⊆ LX

The aim of this section is to prove the results of this paper. First, we construct
a system consisting of one inequality XK ⊆ LX and an additional constraint
X ⊆ M whose largest solution is not recursive and then we encode this system
into a system of two inequalities of the form XK ⊆ LX . Notice that for any
constant languages K, L and M , an arbitrary system consisting of such inequal-
ities possesses the largest solution which can be obtained as the union of all
its solutions (because concatenation distributes over infinite union and therefore
the union of arbitrarily many solutions is again a solution).

Theorem 1. There exists a finite language K and star-free languages L, M
such that the largest solution of the system

XK ⊆ LX, X ⊆M (1)

is not recursively enumerable.

Before presenting the proof of this theorem, let us demonstrate its basic
idea by encoding testing of equality of two counters into the largest solution
of a system of the form (1), which is enough to conclude that the solution is
non-regular.

Example 1. Consider the alphabet B = {a, b, c} together with its disjoint copy
B̂ = {â, b̂, ĉ} and let A = B ∪ B̂. Then define languages K = {aâ, bb̂, cĉ},

L = {aâ, bb̂aâ, cĉaâ, bb̂cĉb} ∪ B̂B ∪ cA∗a ∪ bA∗a ∪A+bA∗b ∪A+cA∗c

and M = (BB̂)+ ∪ B̂ over A and let us denote by S the largest solution of the
system (1) obtained in this way. We are going to prove that the language S is
not regular by means of the pumping lemma.

First we show that for every n ∈ IN0 the word bb̂(aâ)ncĉ(aâ)n belongs to the
language S by constructing a solution N of (1) which contains all these words.
The required solution is defined as

N = B̂ ∪ {un,m, vn,m | n ∈ IN0, 0 ≤ m ≤ n} ,

where un,m = (aâ)mbb̂(aâ)ncĉ(aâ)n−m and vn,m = (aâ)mcĉ(aâ)n+1bb̂(aâ)n−m.



330 Michal Kunc

Let us verify that NK ⊆ LN . Clearly B̂K ⊆ (B̂B) · B̂ ⊆ LN . Now let us
show that un,mK ⊆ LN . First, we have

un,0 · aâ ∈ bA∗a · B̂ ⊆ LN ,

un,m+1 · aâ = aâ · un,m ∈ LN .

For the word bb̂ we distinguish three cases:

u0,0 · bb̂ = bb̂cĉb · b̂ ∈ LN ,

un+1,0 · bb̂ = bb̂aâ · vn,n ∈ LN ,

un,m+1 · bb̂ ∈ A+bA∗b · B̂ ⊆ LN .

And finally, for the word cĉ ∈ K we directly obtain un,m ·cĉ ∈ A+cA∗c ·B̂ ⊆ LN .
For every word vn,m ∈ N the verification is similar. And because the fact

N ⊆M is trivial, we have actually shown that N is a solution of (1) and therefore
the word bb̂(aâ)ncĉ(aâ)n belongs to the largest solution S for every n ∈ IN0.

Now we are going to show that bb̂(aâ)mcĉ(aâ)n /∈ S for every m,n ∈ IN0

satisfying m < n. The proof proceeds by induction with respect to m.
First, let m = 0 and assume for contradiction that bb̂cĉ(aâ)n ∈ S. Then we

obtain
bb̂cĉ(aâ)n · bb̂ ∈ SK ⊆ LS ⊆ LM ,

which is not true because n ≥ 1. Therefore bb̂(aâ)mcĉ(aâ)n /∈ S holds for m = 0.
Now consider the case when m ≥ 1. The induction hypothesis states that

bb̂(aâ)m−1cĉ(aâ)n−1 /∈ S and we prove the required fact bb̂(aâ)mcĉ(aâ)n /∈ S by
contradiction. From bb̂(aâ)mcĉ(aâ)n ∈ S it follows that

bb̂(aâ)mcĉ(aâ)n · bb̂(aâ)m−1 ∈ SKm ⊆ LmS ⊆ LmM .

One can see that every prefix of this word belonging to Lm is either bb̂(aâ)m

or an element of bA∗a · (B̂B)m−1. Because in the latter case, for none of such
prefixes the corresponding suffix belongs to the language M , we deduce that
cĉ(aâ)nbb̂(aâ)m−1 ∈ S. Now we repeat the previous argument using the word
cĉ(aâ)n−1 from Kn instead of bb̂(aâ)m−1 and obtain bb̂(aâ)m−1cĉ(aâ)n−1 ∈ S,
which contradicts the induction hypothesis.

Hence we have demonstrated both bb̂(aâ)ncĉ(aâ)n ∈ S for every n ∈ IN0 and
bb̂(aâ)mcĉ(aâ)n /∈ S for m < n, and so the largest solution of (1) is not regular
due to the pumping lemma.

To prove the theorem we use essentially the same method as in the above
example, but this time we encode into the system an arbitrary Minsky machine.

Proof (of Theorem 1). Let M be a Minsky machine [14] which computes a non-
recursive set of non-negative integers. The machine consists of two counters and
a finite set of states Q, which is a disjoint union

Q = T1 ∪ T2 ∪ I1 ∪ I2 ∪D1 ∪D2 ∪ {1} ,
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where 1 is the terminal state. We assume that the initial state 0 of M belongs
to I1. A configuration of the machine is a triple (i,m, n), where i ∈ Q is a current
state and m,n ∈ IN0 are values stored in the counters. The step performed by
the machine in a given state is determined by the instruction associated with
this state:

– From the state i ∈ Ts, s ∈ {1, 2}, the machine goes to the state τ0(i) if
counter s is empty and to the state τ1(i) otherwise, where τ0(i) �= i and
τ1(i) �= i are distinct states.

– When the machine is in the state i ∈ Is (or i ∈ Ds), it increments (decre-
ments, respectively) counter s and goes to the state τ(i) �= i.

– When the machine reaches the state 1, the computation stops.

We write (i,m, n) → (j, k, l) whenever the step of M performed in the configu-
ration (i,m, n) produces the configuration (j, k, l).

The machine computes the set L(M) ⊆ IN0 of all numbers n such that the
computation of M on the initial configuration (0, 0, n) eventually reaches the
terminal state. Since we have chosen M such that L(M) is not recursive, its
complement IN0 \ L(M) is not recursively enumerable.

We assume that every decrement instruction of the machine M is preceded
by the appropriate zero-test instruction, and from now on we consider only
configurations (i,m, n) satisfying m ≥ 1 if i ∈ D1 and n ≥ 1 if i ∈ D2. Then
the computation of M on every such configuration never reaches a decrement
instruction when the corresponding counter is empty, and so every computation
either stops in a terminal configuration or continues forever.

In addition, let us assume that if the machine can get to a certain state in
one step from two different states i and j, then both states i and j belong to D1;
this can be easily achieved for instance by inserting an increment instruction
followed by a decrement instruction after every instruction.

Consider the alphabet B = {a} ∪ {bi, ci | i ∈ Q} together with its disjoint
copy B̂ = {â}∪{b̂i, ĉi | i ∈ Q} and let A = B∪B̂. Every configuration (i,m, n) of
the machineM will be represented by the word bib̂i(aâ)mciĉi(aâ)n. Such a word
will belong to the largest solution of system (1) if and only if the computation
of M on (i,m, n) does not stop.

Now we define the languages K, L, M over A. First, let

K = {aâ} ∪ {bτ0(i)b̂τ0(i), bτ1(i)b̂τ1(i) | i ∈ T1 ∪ T2}
∪ {bτ(i)b̂τ(i)aâ | i ∈ I1}
∪ {bτ(i)b̂τ(i) | i ∈ I2 ∪D1 ∪D2}
∪ {cτ0(i)ĉτ0(i), cτ1(i)ĉτ1(i) | i ∈ T1 ∪ T2}
∪ {cτ(i)ĉτ(i)aâ | i ∈ I2}
∪ {cτ(i)ĉτ(i) | i ∈ I1 ∪D1 ∪D2} .

The language L is defined as the union of the following star-free languages L0

through L12:
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L0 = {aâ} ∪ B̂KB̂−1 ,

L1 = {bib̂i | i ∈ T1 ∪ T2 ∪ I1 ∪ I2 ∪D2} ,
L2 = {bib̂iaâ | i ∈ D1} ,
L3 = {ciĉi | i ∈ T1 ∪ T2 ∪ I1 ∪ I2 ∪D1} ,
L4 = {ciĉiaâ | i ∈ D2} ,
L5 = {bi | i ∈ Q \ {1}} · (A \ {bi | i ∈ Q})∗ · a ,

L6 = {ci | i ∈ Q} · (A \ {ci | i ∈ Q})∗ · a ,

L7 =
⋃
{A∗ciA

∗bjA
∗ | i, j ∈ Q, j /∈ {τ(i), τ0(i), τ1(i)}} ∩A∗B ,

L8 =
⋃
{A∗biA

∗cjA
∗ | i, j ∈ Q, i �= j} ∩A∗B ,

L9 = A+ · {bi | i ∈ Q} ·A∗ · {bi | i ∈ Q} · A∗ ∩A∗B ,

L10 = A+ · {ci | i ∈ Q} ·A∗ · {ci | i ∈ Q} ·A∗ ∩A∗B ,

L11 =
⋃
{bib̂iA

+ciA
∗bτ0(i) ∪ bib̂iciA

∗bτ1(i) | i ∈ T1} ,

L12 =
⋃
{A∗ciĉiA

+bτ0(i) ∪A∗ciĉibτ1(i) | i ∈ T2} .

Finally, let M = (BB̂)+ ∪ B̂ and denote by S the largest solution of system (1).
Let us briefly sketch out how computations of the Minsky machine are simu-

lated by manipulations of words from A+. The computation basically proceeds
by removing pairs of letters from the beginning of a word bib̂i(aâ)mciĉi(aâ)n and
appending them to its end. In addition, letters bi, b̂i, ci and ĉi are replaced by
the letters corresponding to the next state of the machine, and when for instance
the first counter should be incremented, then instead of the pair bτ(i)b̂τ(i) the
word bτ(i)b̂τ(i)aâ is appended, so the number of pairs aâ in the resulting word
increases.

This process is controlled by system (1) as follows. If some word u ∈ S
obtained during our manipulations is concatenated with a word v ∈ K, the re-
sulting word uv should belong to the language LS. In fact, most of the words
uv lie in LB̂, and because all elements of the alphabet B̂ belong to S thanks
to the language L0, such words uv lie also in LS. For every u there is just one
exceptional word v corresponding to the correct computation of the machine.
And if u does not to belong to S, the only reason for this could be that uv is
not in LS for the exceptional word v. This word uv then possesses only one
decomposition wu′ into a word w from L and a word u′ from M . In this way
we achieve that u lies in S if and only if u′ lies in S. Therefore every computa-
tion of the machine M preserves the properties that the word corresponding to
a configuration belongs, or does not belong, to the solution S.

Incorrect computations of the machine are described by the languages L5

through L12. The language M is used to ensure that any word from one of these
languages can be removed from uv only if its removal produces a one-letter
word; otherwise it would produce a word from B̂A+, which does not belong
to M and consequently also to S. This allows us to describe certain properties
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of the word uv as a whole, not only properties of its prefixes. For instance the
language L5 serves for dealing with words uv starting with a certain letter bi and
not containing other occurrences of such letters; these words arise if one appends
some v not containing any letter bq, q ∈ Q, although bi is just going to be removed
from the beginning of u. Notice that the terminal state 1 is treated differently
from other states in the definition of L5, namely, also incorrect computations
are considered as correct here to ensure that words corresponding to terminal
configurations do not belong to S.

Let us now turn to the formal proof. Because the complement of L(M)
is not recursively enumerable, to show that the solution S is not recursively
enumerable, it is enough to prove that the equivalence

n /∈ L(M) ⇐⇒ b0b̂0c0ĉ0(aâ)n ∈ S (2)

is true for every n ∈ IN0.
Let us consider the set C of all configurations (i,m, n) of M such that the

computation of M starting in (i,m, n) never stops. The rest of the proof is
devoted to verifying that for every configuration (i,m, n) of M:

(i,m, n) ∈ C ⇐⇒ bib̂i(aâ)mciĉi(aâ)n ∈ S . (3)

Then we obtain (2) by taking i = 0 and m = 0, because (0, 0, n) ∈ C is equivalent
to n /∈ L(M).

In order to verify the direct implication of (3), we construct a language N

which satisfies (1) and contains the word bib̂i(aâ)mciĉi(aâ)n for all (i,m, n) ∈ C:

N = B̂ ∪ {bib̂i(aâ)mciĉi(aâ)n, (aâ)pciĉi(aâ)nbj b̂j(aâ)k−p,

(aâ)rbj b̂j(aâ)kcj ĉj(aâ)l−r | (i,m, n) ∈ C, (i,m, n)→ (j, k, l),
0 ≤ p ≤ min(m, k), 0 ≤ r ≤ min(n, l)} .

Let us verify that NK ⊆ LN . Clearly B̂K ⊆ L0B̂ ⊆ LN . Now take any
configuration (i,m, n) ∈ C, and assume that (i,m, n)→ (j, k, l).

First, consider the word u = bib̂i(aâ)mciĉi(aâ)n ∈ N and let us show that
uK ⊆ LN . We have uaâ ∈ L5B̂ ⊆ LN and if we take an arbitrary state
q ∈ Q \ {τ(i), τ0(i), τ1(i)}, then it is clear that both words ubq b̂q and ubq b̂qaâ

belong to L7B̂ ⊆ LN .
Further, notice that our additional assumption about the machineM ensures

that for every q ∈ Q only one of the words bq b̂q and bq b̂qaâ lies in K (and similarly
for the words cq ĉq and cq ĉqaâ). Therefore if we take q equal to one of the states
τ(i), τ0(i) and τ1(i), there is always only one word from K to deal with. For
such states q we have to distinguish several cases according to the instruction
associated with the state i.

Let us start with a state i ∈ T1. Here we directly obtain ubτ0(i)b̂τ0(i) ∈ L11B̂

if m �= 0 and ubτ1(i)b̂τ1(i) ∈ L11B̂ if m = 0. Further, we have k = m and
l = n. For m �= 0 we get j = τ1(i), which implies ubτ1(i)b̂τ1(i) ∈ L1N since the
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word (aâ)mciĉi(aâ)nbτ1(i)b̂τ1(i) can be proved to belong to N by taking p = m.
Similarly, for m = 0 we get j = τ0(i) and therefore ubτ0(i)b̂τ0(i) ∈ L1N .

The case of i ∈ T2 is analogous; one has to employ the language L12 in place
of L11.

If i ∈ I1 then ubτ(i)b̂τ(i)aâ ∈ L1N , and if i ∈ I2 ∪D2 then ubτ(i)b̂τ(i) ∈ L1N ;
both facts can be verified by setting p = m. And for i ∈ D1 we have to use the
value p = m− 1 to obtain ubτ(i)b̂τ(i) ∈ L2N .

Finally, for an arbitrary state q ∈ Q, both words ucq ĉq and ucq ĉqaâ belong
to L10B̂.

Now consider a word u = (aâ)pciĉi(aâ)nbj b̂j(aâ)k−p ∈ N where p �= 0 or
u = (aâ)rbj b̂j(aâ)kcj ĉj(aâ)l−r ∈ N where r �= 0. Then the fact uaâ ∈ L0N
follows by taking p− 1 in place of p and r − 1 in place of r, respectively. And if
q ∈ Q is an arbitrary state, then both words ubq b̂q and ubqb̂qaâ belong to L9B̂

and both words ucq ĉq and ucq ĉqaâ belong to L10B̂.
Next, let p = 0 and take the corresponding word u = ciĉi(aâ)nbj b̂j(aâ)k ∈ N .

Clearly uaâ ∈ L6B̂ and ubqb̂q, ubqb̂qaâ ∈ L9B̂ for any q ∈ Q. Further, for
q ∈ Q \ {j}, both ucq ĉq and ucq ĉqaâ lie in L8B̂. If i ∈ T1 ∪ T2 ∪ I1 ∪ D1

then ucj ĉj ∈ L3N , because we can put r = n. In the case i ∈ I2, we have
ucj ĉjaâ ∈ L3N by the same argument. And for i ∈ D2 we can verify that
ucj ĉj ∈ L4N by setting r = n − 1. This concludes the verification for words of
the second form from the definition of N .

Finally, notice that for r = 0 every word of the third form becomes a word
of the first form, since (j, k, l) ∈ C.

Hence, our claim NK ⊆ LN is proved. Because the fact N ⊆ M is trivial,
we have actually verified that N is a solution of (1). Therefore N ⊆ S, and so
bib̂i(aâ)mciĉi(aâ)n ∈ S holds for every configuration (i,m, n) ∈ C. This shows
that the direct implication of (3) is true.

To complete the proof, we have to verify the converse implication of (3). We
are going to prove bib̂i(aâ)mciĉi(aâ)n /∈ S for every configuration (i,m, n) /∈ C
by induction with respect to the length of a run of M reaching a terminal
configuration from (i,m, n).

First, let (1,m, n) be an arbitrary terminal configuration. Assuming that
u = b1b̂1(aâ)mc1ĉ1(aâ)n ∈ S, we obtain a contradiction by considering the word
u · aâ ∈ SK since uaâ has no prefix belonging to L and therefore uaâ /∈ LS.

Now let (i, 0, n) /∈ C be a configuration of M where i ∈ T1. The step of M
performed in this configuration produces the configuration (τ0(i), 0, n) /∈ C.
By the induction hypothesis, we have bτ0(i)b̂τ0(i)cτ0(i)ĉτ0(i)(aâ)n /∈ S. We prove
bib̂iciĉi(aâ)n /∈ S by contradiction. If bib̂iciĉi(aâ)n ∈ S then

bib̂iciĉi(aâ)n · bτ0(i)b̂τ0(i) ∈ SK ⊆ LS , (4)

and therefore ciĉi(aâ)nbτ0(i)b̂τ0(i) ∈ S because bib̂i · ciĉi(aâ)nbτ0(i)b̂τ0(i) is the
only decomposition of the word (4) into a word from L and a word from M .
Now we have

ciĉi(aâ)nbτ0(i)b̂τ0(i) · cτ0(i)ĉτ0(i) ∈ SK ⊆ LS ,
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and repeating the previous argument, we obtain (aâ)nbτ0(i)b̂τ0(i)cτ0(i)ĉτ0(i) ∈ S.
Consequently,

(aâ)nbτ0(i)b̂τ0(i)cτ0(i)ĉτ0(i) · (aâ)n ∈ SKn ⊆ LnS ,

and because this word possesses only one prefix belonging to Ln, namely (aâ)n,
one can deduce that bτ0(i)b̂τ0(i)cτ0(i)ĉτ0(i)(aâ)n ∈ S, which is a contradiction.

Analogously, one can deal with every configuration (i,m, n) /∈ C where i ∈ T1

and m ≥ 1.
Now take a state i ∈ I1 and consider any configuration (i,m, n) /∈ C. As this

configuration is followed by the configuration (τ(i),m+1, n) in the computation
of M, the induction hypothesis states that bτ(i)b̂τ(i)(aâ)m+1cτ(i)ĉτ(i)(aâ)n /∈ S.
Assuming bib̂i(aâ)mciĉi(aâ)n ∈ S, one gets

bib̂i(aâ)mciĉi(aâ)n · bτ(i)b̂τ(i)aâ ∈ SK ⊆ LS ,

and since there is only one decomposition of this word into a word from L
and a word from M , one directly verifies that (aâ)mciĉi(aâ)nbτ(i)b̂τ(i)aâ ∈ S.
Therefore

(aâ)mciĉi(aâ)nbτ(i)b̂τ(i)aâ · (aâ)m ∈ SKm ⊆ LmS ,

which implies ciĉi(aâ)nbτ(i)b̂τ(i)(aâ)m+1 ∈ S because (aâ)m is the only pre-
fix belonging to Lm. Continuing this way, using c’s instead of b’s, we obtain
bτ(i)b̂τ(i)(aâ)m+1cτ(i)ĉτ(i)(aâ)n ∈ S. This is a contradiction, and so we have
proved bib̂i(aâ)mciĉi(aâ)n /∈ S.

Further, let us show how to deal with a state i ∈ D2. In this case, a configura-
tion (i,m, n) /∈ C, where n ≥ 1, is followed by the configuration (τ(i),m, n− 1).
The induction hypothesis now states bτ(i)b̂τ(i)(aâ)mcτ(i)ĉτ(i)(aâ)n−1 /∈ S and we
assume that bib̂i(aâ)mciĉi(aâ)n ∈ S. Then

bib̂i(aâ)mciĉi(aâ)n · bτ(i)b̂τ(i) ∈ SK ⊆ LS ,

and the uniqueness of the decomposition of this word into words from L and M
shows that (aâ)mciĉi(aâ)nbτ(i)b̂τ(i) ∈ S. Consequently,

(aâ)mciĉi(aâ)nbτ(i)b̂τ(i) · (aâ)m ∈ SKm ⊆ LmS ,

and as this word has only one prefix belonging to the language Lm, we obtain
ciĉi(aâ)nbτ(i)b̂τ(i)(aâ)m ∈ S. This implies

ciĉi(aâ)nbτ(i)b̂τ(i)(aâ)m · cτ(i)ĉτ(i) ∈ SK ⊆ LS .

Again, there is only one prefix from L such that the corresponding suffix belongs
to M , namely ciĉiaâ, which gives (aâ)n−1bτ(i)b̂τ(i)(aâ)mcτ(i)ĉτ(i) ∈ S. Finally,
we have

(aâ)n−1bτ(i)b̂τ(i)(aâ)mcτ(i)ĉτ(i) · (aâ)n−1 ∈ SKn−1 ⊆ Ln−1S ,
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and by removing the only prefix of this word belonging to Ln−1 we obtain
bτ(i)b̂τ(i)(aâ)mcτ(i)ĉτ(i)(aâ)n−1 ∈ S. Thus we have reached a contradiction.

The remaining cases of configurations (i,m, n), where the state i belongs to
one of the sets T2, I2 and D1, can be handled similarly. ��

Theorem 2. There exist finite languages K, P and star-free languages L, R
such that the largest solution of the system

XK ⊆ LX, XP ⊆ RX (5)

is not recursively enumerable.

Proof. Let us consider the languages K, L, M over the alphabet A defined in
the proof of Theorem 1. We enrich the alphabet with a new letter by setting
Ã = A ∪ {d} and define the languages P = {dâ} and R = Md over Ã. We are
going to prove that any language containing the word â is a solution of system (5)
if and only if it is a solution of (1). This in particular means that the largest
solutions of these systems are equal, which proves that the largest solution of (5)
is not recursively enumerable.

It is clear that every solution N of (1) satisfying â ∈ N is a solution of (5)
too. Conversely, assume that a language N is a solution of (5). First notice that
the inequality XK ⊆ LX implies NKn ⊆ LnN for arbitrarily large n ∈ IN,
and since ε /∈ L, we have N ⊆ A∗. Therefore the letter d occurs only once in
every word of the language NP = Ndâ, and from the definition of R one can
immediately see that the inclusion NP ⊆ RN implies N ⊆M . ��

References

1. Aiken, A., Kozen, D., Vardi, M., Wimmers, E.: The complexity of set constraints.
In Proc. CSL ’93, LNCS 832, Springer (1994) 1–17.
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Abstract. The power of tree series transducers of type I and II is studied
for IO as well as OI tree series substitution. More precisely, it is shown
that the IO tree series transformations of type I (respectively, type II)
are characterized by the composition of homomorphism top-down IO tree
series transformations with bottom-up (respectively, linear bottom-up)
IO tree series transformations. On the other hand, polynomial OI tree
series transducers of type I and II and top-down OI tree series transducers
are equally powerful.

1 Introduction

In [1] (restricted) top-down tree transducers were generalized to tree series trans-
ducers [2, 3], in which each transition carries a weight taken from a semiring.
It was shown in Corollary 14 of [1] that nondeleting and linear top-down tree
series transformations preserve recognizable tree series [4–6]. In a sequel [7],
Kuich also showed that nondeleting, linear top-down tree series transforma-
tions are closed under composition (see Theorem 2.4 in [7]). He built on those
two properties the theory of full abstract families of tree series [7]. These results
leave an unexplained gap because nondeletion is not required for these results
in tree transducer theory; i. e., linear top-down tree transformations with reg-
ular look-ahead [8] preserve recognizable tree languages and are closed under
composition. Consequently, the survey [9] poses Question 2, which asks for the
power of tree series transducers which allow look-ahead and copying of output
trees [2, 3].

In the unweighted case, linear top-down tree transducers with regular look-
ahead are as powerful as linear bottom-up tree transducers, which was shown
in Theorem 5.13 of [8]. Moreover, the power of generalized finite-state tree trans-
ducers (respectively, top-down tree transducers with regular look-ahead) is char-
acterized by the composition of a homomorphism and a bottom-up (respectively,
linear bottom-up) tree transformation (see Theorems 5.10 and 5.15 of [8]). In
this paper we show that these results generalize nicely to tree series transducers.
In particular, we show that the linear tree series transducers of type II, which
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are the canonical generalization of top-down tree transducers with regular look-
ahead, compute exactly the class of linear bottom-up tree series transformations
(see Theorem 4). Similarly, we study the canonical extension of generalized finite-
state tree transducers, which are called tree series transducers of type I in the
sequel. We show that the class of tree series transformations of type I (respec-
tively, of type II) coincides with the composition of the class of homomorphism
top-down tree series transformations with the class of bottom-up (respectively,
linear bottom-up) tree series transformations (see Theorem 3). Altogether we
obtain the analogue of the diagram presented on page 228 of [8] for IO tree
series transformations over commutative and ℵ0-complete semirings.

Finally, we investigate tree series transducers of type I and II using OI-
substitution and thereby address Question 2 as originally posed in [9]. It turns
out that polynomial tree series transducers of type I and II and top-down tree
series transducers are equally powerful.

2 Preliminaries

We use IN to represent the nonnegative integers {0, 1, 2, . . .} and IN+ = IN \ {0}.
In the sequel, let k, n ∈ IN and [k] be an abbreviation for { i ∈ IN | 1 � i � k }. A
set Σ which is nonempty and finite is also called an alphabet, and the elements
thereof are called symbols. As usual, Σ∗ denotes the set of all finite sequences of
symbols of Σ (also called Σ-words). Given w ∈ Σ∗, the length of w is denoted
by |w|, and for every 1 � i � |w| the i-th symbol in w is denoted by wi (i. e.,
w = w1 · · ·w|w|).

A ranked alphabet is an alphabet Σ together with a mapping rkΣ : Σ −→ IN,
which associates to each symbol a rank. We use the denotation Σk to represent
the set of symbols (of Σ) which have rank k. Furthermore, we use the set X =
{ xi | i ∈ IN+ } of (formal) variables and the finite subset Xk = { xi | i ∈ [k] }.
Given a ranked alphabet Σ and V ⊆ X, the set of Σ-trees indexed by V , denoted
by TΣ(V ), is inductively defined to be the smallest set T such that (i) V ⊆ T
and (ii) for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ T also σ(t1, . . . , tk) ∈ T . Since
we generally assume that Σ∩X = ∅, we write α instead of α() whenever α ∈ Σ0.
Moreover, we also write TΣ to denote TΣ(∅).

For every t ∈ TΣ(X), we denote by |t|x the number of occurrences of x ∈ X
in t. Given a finite I ⊆ IN+ and family ( ti )i∈I of ti ∈ TΣ(X), the expression
t[ti]i∈I denotes the result of substituting in t every xi by ti for every i ∈ I. If
I = [n], then we simply write t[t1, . . . , tn]. Let V ⊆ X be finite. We say that
t ∈ TΣ(X) is linear in V (respectively, nondeleting in V ), if every x ∈ V occurs
at most once (respectively, at least once) in t. The set of all Σ-trees, which are
linear and nondeleting in V , is denoted by T̂Σ(V ).

A semiring is an algebraic structure A = (A,+, ·, 0, 1) consisting of a com-
mutative monoid (A,+, 0) and a monoid (A, ·, 1) such that · distributes over +
and 0 is absorbing with respect to · . The semiring is called commutative, if
· is commutative. As usual we use

∑
i∈I ai (respectively,

∏
i∈I ai for I ⊆ IN) for

sums (respectively, products) of families ( ai )i∈I of ai ∈ A where for only finitely
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many i ∈ I we have ai �= 0 (respectively, ai �= 1). For products the order of the
factors is given by the order 0 � 1 � · · · on the index set I. We say that A is
ℵ0-complete, whenever it is possible to define an infinitary sum operation

∑
I

for each countable index set I (i. e., card(I) � ℵ0) such that for every family
( ai )i∈I of ai ∈ A

(i)
∑

I( ai )i∈I = aj1 + aj2 , if I = {j1, j2} with j1 �= j2,
(ii)

∑
I( ai )i∈I =

∑
J (
∑

Ij
( ai )i∈Ij )j∈J , whenever I =

⋃
j∈J Ij for some count-

able J and Ij1 ∩ Ij2 = ∅ for all j1 �= j2, and
(iii)

(∑
I( ai )i∈I

)(∑
J( bj )j∈J

)
=

∑
I×J ( aibj )(i,j)∈I×J for all countable J and

families ( bj )j∈J of bj ∈ A.

In the sequel, we simply write the accustomed
∑

i∈I ai instead of the cumbersome∑
I( ai )i∈I , and we implicitly assume

∑
I to be given whenever we speak about

an ℵ0-complete semiring.
Let S be a set and A = (A,+, ·, 0, 1) be a semiring. A (formal) power series

ϕ is a mapping ϕ : S −→ A. Given s ∈ S, we denote ϕ(s) also by (ϕ, s) and write
the series as

∑
s∈S(ϕ, s) s. The support of ϕ is supp(ϕ) = { s ∈ S | (ϕ, s) �= 0 }.

Power series with finite support are called polynomials, and power series with
at most one support element are also called singletons. We denote the set of all
power series by A〈〈S〉〉 and the set of polynomials by A〈S〉. We call ϕ ∈ A〈〈S〉〉
boolean, if (ϕ, s) = 1 for every s ∈ supp(ϕ). The boolean singleton with empty
support is denoted by 0̃. Power series ϕ, ϕ′ ∈ A〈〈S〉〉 are added componentwise;
i. e., (ϕ + ϕ′, s) = (ϕ, s) + (ϕ′, s) for every s ∈ S, and the power series ϕ is
multiplied with a coefficient a ∈ A componentwise; i. e., (a · ϕ, s) = a · (ϕ, s) for
every s ∈ S.

In this paper, we consider only power series in which the set S is a set of
trees. Such power series are also called tree series. Let Δ be a ranked alphabet.
A tree series ϕ ∈ A〈〈TΔ(X)〉〉 is said to be linear (respectively, nondeleting) in
V ⊆ X, if every t ∈ supp(ϕ) is linear (respectively, nondeleting) in V . Let A
be an ℵ0-complete semiring, ϕ ∈ A〈〈TΔ(X)〉〉, I ⊆ IN+ be finite, and (ψi )i∈I

be a family of ψi ∈ A〈〈TΔ(X)〉〉. The pure IO tree series substitution (for short:
IO-substitution) (of (ψi )i∈I into ϕ) [2, 10], denoted by ϕ←−(ψi )i∈I , is defined
by

ϕ←− (ψi )i∈I =
∑

t∈TΔ(X),
(∀i∈I) : ti∈TΔ(X)

(ϕ, t) ·
∏
i∈I

(ψi, ti) t[ti]i∈I .

Let Q be an alphabet and V ⊆ X. We write Q(V ) for { q(v) | q ∈ Q, v ∈ V }.
We use the notation |w|x and the notions of linearity and nondeletion in V
accordingly also for w ∈ Q(X)∗. LetA = (A,+, ·, 0, 1) be a semiring and Σ and Δ
be ranked alphabets. A (type I) tree representation μ (over Q, Σ, Δ, and A) [2, 9]
is a family (μk(σ) )k∈IN,σ∈Σk

of matrices μk(σ) ∈ A〈〈TΔ(X)〉〉Q×Q(Xk)∗ such that
for every (q, w) ∈ Q×Q(Xk)∗ it holds that μk(σ)q,w ∈ A〈〈TΔ(X|w|)〉〉, and we have
μk(σ)q,w �= 0̃ for only finitely many (q, w) ∈ Q×Q(Xk)∗. A tree representation μ
is said to be



The Power of Tree Series Transducers of Type I and II 341

– polynomial (respectively, boolean), if for every k ∈ IN, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ the tree series μk(σ)q,w is polynomial (respectively, boolean),

– of type II (respectively, top-down), if for every k ∈ IN, σ ∈ Σk, q ∈ Q,
and w ∈ Q(Xk)∗ the tree series μk(σ)q,w is linear (respectively, linear and
nondeleting) in X|w|,

– linear (respectively, nondeleting), if for every k ∈ IN, σ ∈ Σk, q ∈ Q, and
w ∈ Q(Xk)∗ such that μk(σ)q,w �= 0̃ both μk(σ)q,w is linear (respectively,
nondeleting) in X|w|, and w is linear (respectively, nondeleting) in Xk,

– bottom-up, if for every k ∈ IN, σ ∈ Σk, and (q, w) ∈ Q× Q(Xk)∗ such that
μk(σ)q,w �= 0̃ we have that w = q1(x1) · · · qk(xk) for some q1, . . . , qk ∈ Q,

– td-deterministic, if for every k ∈ IN, σ ∈ Σk, and q ∈ Q there exists at most
one (w, t) ∈ Q(Xk)∗ × TΔ(X) such that t ∈ supp(μk(σ)q,w), and

– bu-deterministic, if for every k ∈ IN, σ ∈ Σk, and w ∈ Q(Xk)∗ there exists
at most one (q, t) ∈ Q× TΔ(X) such that t ∈ supp(μk(σ)q,w).

Usually when we specify a tree representation μ, we just specify some entries
of μk(σ) and implicitly assume the remaining entries to be 0̃. A tree series
transducer [2, 9] is a sextuple M = (Q,Σ,Δ,A, F, μ) consisting of

– an alphabet Q of states,
– ranked alphabets Σ and Δ, also called input and output ranked alphabet,
– a semiring A = (A,+, ·, 0, 1),
– a vector F ∈ A〈〈T̂Δ(X1)〉〉Q of final outputs, and
– a tree representation μ over Q, Σ, Δ, and A.

Tree series transducers inherit the properties from their tree representation;
e. g., a tree series transducer with a polynomial bottom-up tree representation
is called a polynomial bottom-up tree series transducer. Additionally, we say
that M is a td-homomorphism (respectively, bu-homomorphism), if Q = {%},
F� = 1 x1, and μ is td-deterministic (respectively, bu-deterministic).

For the definition of the IO tree series transformation induced by M we
need IO-substitution, and consequently, A should be ℵ0-complete. Hence let
M = (Q,Σ,Δ,A, F, μ) be a tree series transducer over the ℵ0-complete semiring
A = (A,+, ·, 0, 1). Then M induces a mapping ‖M‖ : A〈〈TΣ〉〉 −→ A〈〈TΔ〉〉 as
follows. For every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ we define the mapping
hμ : TΣ −→ A〈〈TΔ〉〉Q componentwise for every q ∈ Q by

hμ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1)···qn(xin )

μk(σ)q,w ←−
(
hμ(tij )qj

)
j∈[n]

.

Then for every ϕ ∈ A〈〈TΣ〉〉 the (IO) tree series transformation computed by M
is

‖M‖(ϕ) =
∑
t∈TΣ

(ϕ, t) ·
∑
q∈Q

Fq ←−
(
hμ(t)q

)
.

By TOP(A) we denote the class of tree series transformations computable by top-
down tree series transducers over the semiring A. Similarly, we use p–TOP(A)
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[respectively, b–TOP(A), l–TOP(A), n–TOP(A), d–TOP(A), and h–TOP(A)]
for the classes of tree series transformations computable by polynomial (respec-
tively, boolean, linear, nondeleting, td-deterministic, and td-homomorphism)
top-down tree series transducers over the semiring A. Combinations of restric-
tions are handled in the usual manner; i. e., let x–TOP(A) and y–TOP(A) be
two classes of top-down tree series transformations, then

xy–TOP(A) = x–TOP(A) ∩ y–TOP(A) .

The same nomenclature using the stem TOPR (respectively, GST and BOT)
is applied to type II (respectively, type I and bottom-up) tree series trans-
ducers, where for bottom-up tree series transducers the properties beginning
with “td” are replaced by the corresponding ones starting with “bu”. For ex-
ample, hn–BOT(A) denotes the class of tree series transformations computable
by nondeleting bu-homomorphism bottom-up tree series transducers over the
semiring A.

We write ◦ for function composition; so if τ1 : A〈〈TΣ〉〉 −→ A〈〈TΔ〉〉 and
τ2 : A〈〈TΔ〉〉 −→ A〈〈TΓ 〉〉 then (τ1 ◦ τ2)(ϕ) = τ2

(
τ1(ϕ)

)
for every ϕ ∈ A〈〈TΣ〉〉.

This composition is extended to classes of functions in the usual manner.

3 IO Tree Series Substitution

In this section we first show how to simulate a tree series transducer M of type
I or II by means of the composition of a td-homomorphism top-down tree series
transducer M1 and a bottom-up tree series transducer M2. Thereby we obtain a
limitation of the power of tree series transducers of types I and II. The idea of the
construction is to simply create sufficiently many copies of subtrees of the input
tree by M1. Then multiple visits of M to one input subtree such as, for example,
q(x1) and p(x1) can be simulated by q(x1) and p(x6) where x6 refers to a copy
of x1 created by M1. More precisely, we first compute the maximal number of
visits to one subtree spawned by one rule application. Let mx be that number.
We create a new output alphabet from the input alphabet Σ of M by keeping
the symbols of Σ but changing their rank to mx-times their rank in Σ. Reading
σ(t1, . . . , tk) in the input, M1 simply outputs σ(u1, . . . , u1, . . . , uk, . . . , uk) where
ui is the translation of ti for every i ∈ [k]. Then we can simulate M without
visiting input subtrees twice because enough copies are available. Altogether this
yields that at each node of the output tree of M1 each direct input subtree is
visited at most once and such a tree series transducer can be simulated by a
bottom-up tree series transducer M2.

In the sequel, we use the notation [y] where y is one of the abbreviations of
restrictions (i. e., y ∈ {p, b, l, n, d, h}) in equalities and inequalities to mean that
this restriction is optional; i. e., throughout the statement [y] can be substituted
by the empty word or by y. For example, [d]–TOP(A) ⊆ [d]–TOPR(A) states
that each tree series transformation computable by top-down (respectively, td-
deterministic top-down) tree series transducers is also computable by tree series
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transducers of type II (respectively, td-deterministic tree series transducers of
type II).

Lemma 1 (Decomposition). Let A be a commutative, ℵ0-complete semiring.

[p][b][l]–GST(A) ⊆ [l]bhn–TOP(A) ◦ [p][b][l]–BOT(A) (1)

[p][b][l]–TOPR(A) ⊆ [l]bhn–TOP(A) ◦ [p][b]l–BOT(A) (2)

Proof. Let M = (Q,Σ,Δ,A, F, μ) be a tree series transducer. We construct a
td-homomorphism top-down tree series transducer M1 and a bottom-up tree
series transducer M2 such that ‖M‖ = ‖M1‖ ◦ ‖M2‖. Let w ∈ Q(X)∗. Recall
that by |w|x we denote the number of occurrences of x ∈ X in w. Let

mx = max
(
{1} ∪ { |w|xj | k, j ∈ IN, σ ∈ Σk, (q, w) ∈ Q×Q(X)∗, μk(σ)q,w �= 0̃ }

)
and for every k ∈ IN we let Γk·mx = Σk and Γn = ∅ for every n ∈ IN that
is not a multiple of mx. We note that mx = 1 if M is linear. We construct
M1 = ({%}, Σ, Γ,A, F1, μ1) with (F1)� = 1 x1 and for every k ∈ IN and σ ∈ Σk

(μ1)k(σ)�,�(x1)···�(x1)︸ ︷︷ ︸
mx times

··· �(xk)···�(xk)︸ ︷︷ ︸
mx times

= 1 σ(x1, . . . , xk·mx) .

Clearly, M1 is a boolean, nondeleting, homomorphism tree series transducer,
which is linear whenever M is so. In this case M1 just computes the identity.

Let ⊥ /∈ Q be a new state, Q′ = Q ∪ {⊥}, and d ∈ IN be the maximal
integer such that Σd �= ∅. For every n ∈ [d] let In ∈ IN[d], where IN[d] is the set
of all mappings from [d] to IN (alternatively a vector with d entries of IN), be
In(n′) = 0 for every n′ ∈ [d] \ {n} and In(n) = 1. Moreover, let I =

∑
i∈[d] Ii.

For every k ∈ IN we define renk : Q(X)∗ × IN[d] −→ Q′(X)∗ for every f ∈ IN[d]

inductively on Q(X)∗ by

renk(ε, f) = ⊥(xf(1)) · · ·⊥(xmx)⊥(xmx+f(2)) · · · ⊥(x2·mx)
· · ·
⊥(x(k−2)·mx+f(k−1)) · · · ⊥(x(k−1)·mx)⊥(x(k−1)·mx+f(k)) · · · ⊥(xk·mx)

and for every q ∈ Q, i ∈ [d], w ∈ Q(Xd)∗ by

renk(q(xi)·w, f) = q(x(i−1)·mx+f(i))· renk(w, f + Ii) .

Secondly, let M ′
2 = (Q′, Γ,Δ,A, F2, μ

′
2) with (F2)q = Fq for every q ∈ Q and

(F2)⊥ = 0̃ and (μ′
2)k·mx(σ)q,renk(w,I) = μk(σ)q,w for every k ∈ IN, σ ∈ Σk, q ∈ Q,

and w ∈ Q(Xk)∗. Finally, let α ∈ Σ0 be arbitrary and

(μ′
2)k·mx(σ)⊥,⊥(x1)···⊥(xk·mx) = 1 α .

Note that M ′
2 need not be bottom-up because there may be (μ′

2)k(σ)q,w �= 0̃
where w is of the form w1·q1(xj1)q2(xj2)·w2 with j1 > j2; i. e., the variables
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in w do not occur in the order x1, . . . , xk. By a straightforward reordering of the
symbols qi(xj) in w and a corresponding substitution of variables in (μ′

2)k(σ)q,w ,
we can, however, turn M ′

2 into a bottom-up tree series transducer M2.
We furthermore note that if M is of type II, then M ′

2 is actually a linear tree
series transducer of type II, and consequently, M2 is linear as well. Finally, it is
also obvious that M2 is polynomial (respectively, boolean, linear), whenever M
is so. Clearly, the homomorphism property (of M) is not preserved because we
added the extra state ⊥. ��

Now let us investigate the opposite direction; i. e., the composition of a td-
homomorphism top-down tree series transducer M1 and a bottom-up tree series
transducer M2. The idea of the construction is quite straightforward; we translate
the output of M1 with the help of M2. Therefore, we need to generalize the
mapping hμ2 to trees with variables. Roughly speaking, we supply hμ2 with a
mapping that assigns a state to each variable. A successful computation may
commence at a variable only in the state assigned to the variable. So let M =
(Q,Σ,Δ,A, F, μ) be a tree series transducer over an ℵ0-complete semiring A,
and let V ⊆ IN+. For every q̄ ∈ QV we define the mapping hq̄

μ : TΣ(X) −→
A〈〈TΔ(X)〉〉Q as follows.

– For every j ∈ IN+ and q ∈ Q

hq̄
μ(xj)q =

{
0̃ if j ∈ V, q̄j �= q ,

1 xj otherwise .

– For every k ∈ IN, σ ∈ Σk, t1, . . . , tk ∈ TΣ(X), and q ∈ Q

hq̄
μ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1)···qn(xin )

μk(σ)q,w ←− (hμ(tij )qj )j∈[n] .

We just write q̄1 · · · q̄n for q̄ whenever V = [n] for some n ∈ IN.

Lemma 2 (Composition). Let A be a commutative and ℵ0-complete semiring.

[l]h–TOP(A) ◦ [p][l][h]–BOT(A) ⊆ [p][l][h]–GST(A) (3)

[l]h–TOP(A) ◦ [p][h]l–BOT(A) ⊆ [p][l][h]–TOPR(A) (4)
[l]h–TOP(A) ◦ [p][h]nl–BOT(A) ⊆ [p][l][h]–TOP(A) (5)

Proof. Let M1 = ({%}, Σ, Γ,A, F1, μ1) be a homomorphism top-down tree series
transducer and M2 = (Q,Γ,Δ,A, F, μ2) be a bottom-up tree series transducer.
We construct a tree series transducer M = (Q,Σ,Δ,A, F, μ) as follows. For
every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗ let

μk(σ)q,w = hq1···qn
μ2

(
(μ1)k(σ)�,�(xi1 )···�(xin )

)
q

.

By the definition of top-down tree representations, (μ1)k(σ)�,�(xi1 )···�(xin ) is non-
deleting and linear in Xn. Whenever M2 is linear (respectively, nondeleting and
linear), then M will be of type II (respectively, top-down). The proof of preser-
vation of the additional properties is left to the reader. ��
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Putting Lemmata 1 and 2 together, we obtain the following characterization
of the power of tree series transducers of type I and II.

Theorem 3. Let A be a commutative and ℵ0-complete semiring.

[p][l]–GST(A) = [l]bh–TOP(A) ◦ [p][l]–BOT(A) (6)

[p][l]–TOPR(A) = [l]bh–TOP(A) ◦ [p]l–BOT(A) (7)

Proof. The statements follow directly from Lemmata 1 and 2. ��

Finally, we turn to the question concerning linear tree series transformations
of type II. So far, we have seen that l–TOPR(A) = lbh–TOP(A)◦ l–BOT(A) and
hence l–BOT(A) ⊆ l–TOPR(A). The converse [i. e., l–TOPR(A) ⊆ l–BOT(A)]
can be seen from our remark in the proof of Lemma 1. There we noted that if the
input transducer M is linear, then the first transducer M1 of the composition
just computes the identity; thus l–TOPR(A) ⊆ l–BOT(A). Hence we derived
the following theorem.

Theorem 4. Let A be a commutative and ℵ0-complete semiring.

l–TOPR(A) = l–BOT(A) (8)

The inclusions are displayed graphically for commutative and ℵ0-complete
semirings A in Fig. 1, where all line segments are directed upwards, so that, e. g.,
l–TOP(A) ⊆ l–BOT(A). However, none of the inclusions needs to be strict.

Fig. 1. Hierarchy of IO tree series transformations
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4 OI Tree Series Substitution

Throughout the survey [9] the used tree series substitution is OI tree series
substitution [1, 11]. It is clear that as long as the tree representation of a tree
series transducer is linear and nondeleting (i. e., the tree series transducer is
top-down), the use of OI tree series substitution instead of pure IO tree series
substitution does not yield different results. If these conditions are, however,
not required (e. g., for tree series transducers of types I and II), the results
may diverge, and this section examines the ramifications of using OI tree series
substitution. Thereby we answer Question 2 as originally posed in [9].

Let A = (A,+, ·, 0, 1) be an ℵ0-complete semiring, k ∈ IN, δ ∈ Δk be a
symbol of a ranked alphabet Δ, and ψ1, . . . , ψk ∈ A〈〈TΣ(X)〉〉. We define

δ(ψ1, . . . , ψk) =
∑

t1,...,tk∈TΔ(X)

(ψ1, t1) · · · (ψk, tk) δ(t1, . . . , tk) .

Let I ⊆ IN+ be finite, ϕ ∈ A〈〈TΔ(X)〉〉, and (ψi )i∈I be a family of tree series
ψi ∈ A〈〈TΣ(X)〉〉. The OI tree series substitution (of (ψi )i∈I into ϕ) [1, 11] (for
short: OI-substitution), denoted by ϕ[ψi]i∈I , is inductively defined as follows.

– For every j ∈ IN+

xj [ψi]i∈I =

{
ψj if j ∈ I ,

1 xj otherwise .

– For every k ∈ IN, δ ∈ Δk, and t1, . . . , tk ∈ TΔ(X)

δ(t1, . . . , tk)[ψi]i∈I = δ(t1[ψi]i∈I , . . . , tk[ψi]i∈I) .

Finally, ϕ[ψi]i∈I =
∑

t∈TΣ(X)(ϕ, t)·t[ψi]i∈I . We write ϕ[ψ1, . . . , ψn] for ϕ[ψi]i∈[n].
The semantics of tree series transducers using OI-substitution is defined next.

Let M = (Q,Σ,Δ,A, F, μ) be a tree series transducer. We define the mapping
hOI

μ : TΣ −→ A〈〈TΔ〉〉Q for every k ∈ IN, σ ∈ Σk, and t1, . . . , tk ∈ TΣ component-
wise for every q ∈ Q by

hOI
μ

(
σ(t1, . . . , tk)

)
q

=
∑

w∈Q(Xk)∗,
w=q1(xi1 )···qn(xin )

μk(σ)q,w

[
hOI

μ (tij )qj

]
j∈[n]

.

The OI tree series transformation computed by M , denoted by ‖M‖OI, is then
defined for every ϕ ∈ A〈〈TΣ〉〉 by

‖M‖OI(ϕ) =
∑
t∈TΣ

(ϕ, t) ·
∑
q∈Q

Fq

[
hOI

μ (t)q

]
.

We denote the class of OI tree series transformations computable by a class
of tree series transducers by the OI-subscripted denotation of the class of tree
series transformations computable by the same class of transducers using IO-
substitution. For example, p–TOPR

OI(A) denotes the class of all OI tree series
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transformations computable by polynomial tree series transducers of type II
(over the semiring A).

Firstly, we show that tree series transducers of type II and top-down tree
series transducers are equally powerful supposed that OI-substitution is used.
Roughly speaking, this is due to the fact that the tree series to be substituted
for a deleted variable has absolutely no influence on the result of the substitution;
i. e., ϕ[ψi]i∈I = ϕ[ψi]i∈var(ϕ) where var(ϕ) =

⋃
t∈supp(ϕ) var(t).

Lemma 5. For every ℵ0-complete semiring A

[p][b][l][n][d][h]–TOPR
OI(A) = [p][b][l][n][d][h]–TOPOI(A) . (9)

Proof. Clearly, each top-down tree series transducer is also of type II, so it just
remains to prove y–TOPR

OI(A) ⊆ y–TOPOI(A). Let M = (Q,Σ,Δ,A, F, μ) be a
tree series transducer and j ∈ IN+ be the maximal integer such that there exist
k ∈ IN, σ ∈ Σk, q ∈ Q, w ∈ Q(X)∗, and t ∈ supp(μk(σ)q,w) such that j � |w|
and |t|xj = 0. We construct a tree series transducer M ′ = (Q,Σ,Δ,A, F, μ′)
such that ‖M‖ = ‖M ′‖ and for every k ∈ IN and σ ∈ Σk all tree series in the
range of μ′

k(σ) will be nondeleting in Xk ∩ (X \Xj−1). Clearly, since max{ |w| |
k ∈ IN, σ ∈ Σk, μk(σ)q,w �= 0̃ } is finite, iteration of this construction yields the
desired result.

For every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗, if
j > n then we let μ′

k(σ)q,w = μk(σ)q,w and otherwise we set

μ′
k(σ)q,w =

∑
t∈TΔ(X),
|t|xj

�1

(μk(σ)q,w , t) t +

+
∑

w′∈Q(Xk)n+1,
w=w′

1···w
′
j−1w′

j+1···w
′
n+1,

t∈TΔ(X\{xj})

(μk(σ)q,w′ , t) t[x1, . . . , xj , xj , . . . , xn] .

Clearly, μ′
k(σ)q,w is nondeleting in Xk ∩ (X \ Xj−1) as is every other tree series

in the range of μ′
k(σ) for arbitrary k ∈ IN and σ ∈ Σk. Moreover, ‖M‖ = ‖M ′‖

because for every ϕ, ϕ′ ∈ A〈〈TΔ(X)〉〉 and family (ψi )i∈I of ψi ∈ A〈〈TΔ(X)〉〉
we have that (ϕ + ϕ′)[ψi]i∈I = ϕ[ψi]i∈I + ϕ′[ψi]i∈I and ϕ[ψi]i∈I = ϕ[ψi]i∈I\{j},
whenever j /∈ var(ϕ). ��

Similarly, we can show that nonlinearity can be resolved by naming multiple
occurrences of the same variable apart. Let ren: TΔ(X)× IN+ × IN+ −→ TΔ(X)
be the mapping such that ren(t, j, n) is the tree obtained by renaming the first
occurrence (with respect to a depth-first left-to-right traversal of t) of xj in t
to xj , the second occurrence of xj to xn, the third occurrence of xj to xn+1,
and so on. Then roughly speaking, the construction is based on the observation
t[ψ1, . . . , ψk] = ren(t, j, k + 1)[ψ1, . . . , ψk, ψj , . . . , ψj ] for every t ∈ TΔ(Xk) and
j ∈ [k].
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Lemma 6. For every ℵ0-complete semiring A

[b][l][n][d][h]p–TOPR
OI(A) = [b][l][n][d][h]p–GSTOI(A) . (10)

Proof. Let M = (Q,Σ,Δ,A, F, μ) be a polynomial tree series transducer and
j ∈ IN+ be the maximal integer such that there exist k ∈ IN, σ ∈ Σk, q ∈ Q,
w ∈ Q(X)∗, and t ∈ supp(μk(σ)q,w) such that j � |w| and |t|xj > 1. We construct
a tree series transducer M ′ = (Q,Σ,Δ,A, F, μ′) such that ‖M‖ = ‖M ′‖ and for
every k ∈ IN and σ ∈ Σk all tree series in the range of μ′

k(σ) will be linear in
Xk ∩ (X\Xj−1). Clearly, since max{ |w| | k ∈ IN, σ ∈ Σk, μk(σ)q,w �= 0̃ } is finite,
iteration of this construction yields the desired result.

For every k ∈ IN, σ ∈ Σk, q ∈ Q, and w = q1(xi1) · · · qn(xin) ∈ Q(Xk)∗, if
j > n then we let μ′

k(σ)q,w = μk(σ)q,w , and otherwise we set

μ′
k(σ)q,w =

∑
t∈TΔ(X),
|t|xj

�1

(μk(σ)q,w , t) t +

+
∑

w′∈Q(Xk)∗,
t∈supp(μk(σ)q,w′ ),|t|xj

>1,

w′′=(w′
j)

|t|xj
−1

,w=w′w′′

(μk(σ)q,w′ , t) ren(t, j, |w′|+ 1) ,

Due to the fact that M is polynomial, μ′ is a tree representation. Moreover,
μ′

k(σ)q,w is linear in Xk ∩ (X \ Xj−1) as is every other tree series in the range
of μ′

k(σ) for arbitrary k ∈ IN and σ ∈ Σk. Moreover, ‖M‖ = ‖M ′‖ because for
every n ∈ IN, i ∈ [n], t ∈ TΔ(Xn), and ψ1, . . . , ψn ∈ A〈TΔ(X)〉 we have that

t[ψ1, . . . , ψn] = ren(t, i, n + 1)[ψ1, . . . , ψn, ψi, . . . , ψi︸ ︷︷ ︸
|t|xi

−1

] .

The proof proceeds along the lines of the one of Lemma 5 and is therefore
omitted. ��

The proof of the previous result breaks down whenever M is not polynomial.
However, if there exists a constant n ∈ IN such that for every j ∈ IN+, k ∈ IN,
σ ∈ Σk, q ∈ Q, w ∈ Q(Xk)∗, and t ∈ supp(μk(σ)q,w) we have that |t|xj � n,
then the result holds and can be proved in essentially the same manner.

Theorem 7. For every ℵ0-complete semiring A

[b][l][n][d][h]p–TOP(A) = [b][l][n][d][h]p–TOPOI(A)

= [b][l][n][d][h]p–TOPR
OI(A) = [b][l][n][d][h]p–GSTOI(A) . (11)

Proof. The theorem is an immediate consequence of Lemmata 5 and 6. ��

Hence Question 2 of [9] can be answered by stating that polynomial tree
series transducers of type I, polynomial tree series transducers of type II, and
polynomial top-down tree series transducers are all equally powerful with respect
to OI-substitution.
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Abstract. Given a class C of languages, the Inclusion Problem for C
consists of deciding whether for L1, L2 ∈ C we have L1 ⊆ L2.
In this work we prove that the Inclusion Problem is decidable for the
class of unambiguous rational trace languages that are subsets of the
monoid (((a�

1 · b�
1) × c�

1) · ((a�
2 · b�

2) × c�
2)) × c�

3.

1 Introduction

Trace languages have been introduced by Mazurkiewicz [15] as a model of the
behaviour of concurrent processes. More precisely, trace languages are subsets
of free partially commutative monoids for which several decision problems have
been studied. In particular, given a class C of trace languages the Inclusion
Problem for C consists of deciding whether for L1, L2 ∈ C we have L1 ⊆ L2.
The Equivalence Problem for C (L1 = L2?) can be defined similarly; moreover,
it is immediate to see that, for every class C, Equivalence for C is reducible to
Inclusion for C since L1 = L2 iff L1 ⊆ L2 and L2 ⊆ L1. Therefore, if Inclusion
is decidable then Equivalence is decidable, and if a class C is closed under union
(or intersection) then both problems are either decidable or undecidable since
L1 ⊆ L2 if and only if L1 ∪ L2 = L2 (L1 ∩ L2 = L1).

In this paper we deal with the class of unambiguous rational trace lan-
guages RatU(Σ,C), a particular subclass of the class of rational trace languages
Rat(Σ,C) that has been widely studied and for which many results are known.
In particular, using a technique due to Ibarra ([12]), in [1], [11] it is shown that

Equivalence for Rat(Σ,C) is undecidable when Σ = {a, b, c} and C = a

b
∧c. On

the other hand, Inclusion turns out to be decidable when C is transitive ([5]). We
also recall that Equivalence for RatU(Σ,C) is decidable for any commutation
relation C ([19]), while, for the same class, Inclusion is undecidable if C is the

relation
a

d

b

c ([4]). Last but not least, in [7] it is shown that Inclusion is de-
cidable for the class RatFin(Σ,C) of finitely ambiguous rational trace languages
over an alphabet Σ = A∪·B with C = (A×Σ ∪Σ ×A) \ I.
� Partially supported by the Project M.I.U.R. COFIN 2003-2005 “Formal languages

and automata: methods, models and applications”

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 350–361, 2005.
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The main result we present here is that Inclusion is decidable for the class
RatU(Σ,C) with alphabet Σ = {a1, b1, c1, a2, b2, c2, c3} and commutation rela-
tion C given by

�� �� �� ��
�

�
�

���
��� �
�

�

�
�

�
��

�
�
�

	
	

	
		

c3

c1 c2

a1 b1 a2 b2

We follow a technique similar to that used in [8] to show that Equivalence
is decidable for a class C of recursive languages that is c-holonomic and c-closed
under intersection (i.e. the elements of C admit holonomic generating functions,
have finite computable specifications, their intersection is in C and has a spec-
ification computed in a finite time). More precisely, given two trace languages
L1, L2 ∈ RatU(Σ,C), we reduce the problem of deciding whether L1 ⊆ L2 to
the problem of verifying an equality between generating functions:

φL1(z) = φL1∩L2(z) .

By showing that these generating functions are holonomic, it turns out that
Inclusion for RatU(Σ,C) is reduced to Equivalence for holonomic functions, a
problem that is well known to be decidable (see, for instance, [20]).

2 Preliminaries

In this section we recall some basic definitions and results about trace languages
and formal series.

2.1 Monoids and Languages

Let M1,M2 be two submonoids of a monoid M. The free product of M1 and M2

is defined as the monoid M1 ·M2 = {m ∈ M |m = m1m
′
1m2m

′
2 · · ·mkm

′
k,mi ∈

M1,m
′
i ∈ M2}. The direct product of monoids is denoted by × and defined as

M1 ×M2 = {(m1,m2) |m1 ∈ M1,m2 ∈ M2}. Let Σ = {σ1, . . . , σn} be a finite
alphabet and let Σ� be the free monoid generated by Σ, that is, the monoid
σ�

1 · σ�
2 · . . . · σ�

n. The elements of Σ� are called words. If w = σi1 · · ·σin ∈ Σ� its
length is |w| = n. A language is simply a subset of Σ�.
A commutation relation on Σ is an irreflexive and symmetric relation C ⊆ Σ×Σ.
We denote by F (Σ,C) the free partially commutative (f.p.c.) monoid Σ�/ρC

where ρC ⊆ Σ�×Σ� is the congruence generated by C. We call trace an element
of a f.p.c. monoid. A trace can be interpreted as an equivalence set of words:
given a string w ∈ Σ� we denote by [w]ρC the equivalence class of w (i.e. the
trace generated by w). A trace language is a subset of F (Σ,C); given a language
L ⊆ Σ� and a commutation relation C, the trace language generated by L is

[L]ρC = {[w]ρC | w ∈ L} ⊆ F (Σ,C) .
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When C = Σ × Σ, we denote by Σc the free commutative monoid generated
by Σ. An element σa = σa1

1 · · ·σan
n of Σc is called monomial and the product of

monomials becomes σa · σb = σa1+b1
1 · · ·σan+bn

n .

We define here a class M of monoids that is of particular interest for the
cases we consider later on.

Definition 1. M is the smallest class of monoids containing the monoids σ�

(σ ∈ Σ) and closed under · and ×.

It is easily shown that all the elements of M are f.p.c. monoids and that there
exist f.p.c. monoids that are not in M as, for example, the f.p.c. monoid defined
by the commutation relation

a

b c

d

The elements of a monoid m ∈ M are called serial/parallel traces since they
can be obtained as serial/parallel composition of basic components belonging to
free noncommutative monoids.

Example 1. Let Σ = {a, b, c, d, e}. An element of the monoid ((a�·d�)×(b�·c�))·e�

has a structure of type

α

β

γ· · ·��
��

��
��

α

β

γ��
��

��
��

· · ·

where α belongs to the monoid a� · d�, β belongs to b� · c� and γ ∈ e�.

2.2 Formal Series and Rational Languages

Let Q be the field of rational numbers. A formal series ψ on a monoid M with
coefficients in Q is a function ψ : M �→ Q. We denote by (ψ,w) the coefficient in
Q associated with w by ψ, and we encode ψ by the formal sum

∑
w∈M (ψ,w)w.

The support of a series ψ is the set Supp(ψ) = {m ∈M | (ψ,m) �= 0}. The sum
and the Cauchy product of formal series are defined respectively as

(φ + ψ,w) = (φ,w) + (ψ,w), (φ · ψ,w) =
∑

xy=w

(φ, x) · (ψ, y) .

We also consider the Hadamard product of two series, defined as

(φ . ψ,w) = (φ,w) · (ψ,w) .

Let Σ be a finite alphabet, we denote by Q〈〈Σ〉〉 the ring of formal series on
the free monoid Σ� having values in Q. We also indicate by Q〈Σ〉 the ring of
polynomials, that is, the ring of series in Q〈〈Σ〉〉 having finite support.
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Definition 2. A series φ ∈ Q〈〈Σ〉〉 is called rational if it is an element of the
rational closure of Q〈Σ〉 (operations of sum, Cauchy product, external product
of Q on Q〈〈Σ〉〉, star).

Definition 3. A series φ ∈ Q〈〈Σ〉〉 is said recognizable if and only if there exist
an integer n ≥ 1, a morphism of monoids μ : Σ� �→ Qn×n, a row vector λ ∈ Q1×n

and a column vector γ ∈ Qn×1 such that for all w ∈ Σ� (φ,w) = λμwγ. The
triple 〈λ, μ, γ〉 is called the linear representation of φ.

Theorem 1 ([17]). A formal series is recognizable if and only if it is rational.

We refer to [3] for a detailed introduction to the class of rational formal series.
When we consider series on a f.p.c. monoid F(Σ,C), we say that φ : F(Σ,C) �→ Q
is rational if and only if there exists a linear representation 〈λ, μ, γ〉 such that

(φ, t) =
∑

w∈Σ�

[w]C=t

λμwγ .

Given a subset L ⊆ M , the characteristic series of L is the formal series χL :
M �→ {0, 1} defined as

(χL,m) =
{

1 m ∈ L,
0 otherwise .

Given a formal series φ, the generating function associated with φ is the function

fφ(z) =
∑

m∈M

(φ,m)z|m| .

In particular, the generating function of L is the generating function associated
with the characteristic series of L, that is,

fL(z) = fχL(z) =
∑

m∈M

(χL,m)z|m| =
∑
n≥0

cnz
n ,

where cn =  {m ∈ L | |m| = n}.

We also consider formal series on the free commutative monoid Σc. A formal
series in commutative variables is a function ψ : Σc �→ Q,

ψ(σ1, . . . , σn) =
∑

σı∈Σc

ψ(σ
ı)σı =

∑
ı≥0

ψ(σ
ı)σı ,

where ψ(σı) indicates the coefficient in ψ of the monomial σı. In the rest of the
paper, we use the operator [σı] applied to ψ(σ1, . . . , σn), [σı]ψ(σ1, . . . , σn), in
order to extract the coefficient ψ(σ

ı).
The set of formal series in commutative variables Σ with coefficients in Q is
denoted by Q[[Σ]]. On Q[[Σ]] we consider the usual operations of sum (+),
Cauchy product (·) and
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– Partial derivative: (∂iφ)(σa1
1 · · ·σai

i · · ·σan
n ) = (ai+1)φ(σa1

1 · · ·σai+1
i · · ·σan

n ),
– Primitive diagonal: if p �= q then

(Δpq(φ))(σi1
1 · · ·σ

iq−1
q−1 σ

iq+1
q+1 · · ·σin

n ) = φ(σi1
1 · · ·σ

iq−1
q−1 σ

ip
q σ

iq+1
q+1 · · ·σin

n ),
– Substitution: φ(ψ1(τ1, . . . , τm), . . . , ψn(τ1, . . . , τm)).

Some interesting subclasses of Q[[Σ]] are the class of commutative polynomials
Q[Σ] and the class of rational formal series Q[[Σ]]r. A series φ ∈ Q[[Σ]]r can be
thought as the power series expansion of a function P/Q with P,Q ∈ Q[Σ] and
Q(0) = 1. It is known that Q[[Σ]]r is not closed with respect to the Hadamard
product and primitive diagonal (see, for instance, [10]), and so it is quite natural
to look for an extension of Q[[Σ]]r that is closed with respect to these operations:
this extension consists of the class of holonomic series Q[[Σ]]h, formally defined
as follows.

Definition 4. A formal series φ ∈ Q[[Σ]] is said to be holonomic iff there exist
some polynomials pij ∈ Q[Σ], 1 ≤ i ≤ n, 0 ≤ j ≤ di, pidi �= 0, such that

di∑
j=0

pij∂
j
i φ = 0, 1 ≤ i ≤ n .

As a matter of fact, holonomic series are power series expansions of suitable
functions that belong to the class of holonomic functions. This class was first
introduced by I.N. Bernstein in the ’1970 ([2]) and deeply investigated by Stanley,
Lipshitz, Zeilberger et al. (see [9], [13], [14], [18] and [20]).
The closure properties of Q[[Σ]]h are summarized in the following theorem.

Theorem 2. The class Q[[Σ]]h is closed under the operations of sum, Cauchy
product, Hadamard product, primitive diagonal, substitution with algebraic se-
ries.

Proof. See, for instance, [14]. ��

At last, we recall that Q[[Σ]]h properly contains the class Q[[Σ]]a of algebraic
formal series (see [16] for a definition of algebraic series). So, we have

Q[[Σ]]r ⊂ Q[[Σ]]a ⊂ Q[[Σ]]h .

A language L ⊆ Σ� is said to be rational if and only if it is the support of a
rational series on Σ�. In the case of trace languages we have the following:

Definition 5. A trace language L ∈ F(Σ,C) is rational if and only if there
exists a rational series φ on F(Σ,C) such that L = Supp(φ).

Definition 6. A trace language L ∈ F(Σ,C) is said unambiguous rational if and
only if there exists a rational series φ : F(Σ,C) �→ {0, 1} such that L = Supp(φ).

We denote by Rat(Σ,C) the set of rational trace languages on F (Σ,C) and by
RatU(Σ,C) the set of unambiguous rational trace languages.
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3 The Inclusion Problem for RatU(Σ, C)

We formally define the Inclusion Problem for RatU(Σ,C) as follows.

Problem (Inclusion for RatU(Σ,C)). Given two linear representations

〈λ1, μ1, γ1〉 , 〈λ2, μ2, γ2〉

defining two unambiguous rational trace languages L1, L2, decide whether

L1 ⊆ L2 .

We approach the Inclusion Problem by means of generating functions. In fact,
given two subsets of a monoid, L1, L2 ⊆M , it is immediate to note that L1 ⊆ L2

if and only if L1 ∩ L2 = L1, that is, if and only if fχL1�χL2
(z) = fχL1

(z).
Therefore, a natural way to solve Inclusion for RatU(Σ,C) leads to the following
steps:

Step 1: Given L1, L2 ∈ RatU(Σ,C) compute fχL1�χL2
(z) and fχL1

(z).
Step 2: Given fχL1�χL2

(z), fχL1
(z), decide whether fχL1�χL2

(z) = fχL1
(z).

By showing that for a particular commutation relation C Step 1 and Step 2 are
decidable, we prove the following:

Theorem 3. The Inclusion Problem for RatU(Σ,C) is decidable when C is
given by

�� �� �� ��
�

�
�

���
��� �
�

�

�
�

�
��

�
�
�

	
	

	
		

c3

c1 c2

a1 b1 a2 b2

Observe that the previous commutation relation can be obtained by considering
a complete binary tree of height 2 (with symbols associated with nodes) and
setting that two nodes a, b commute if and only if a is in the subtree rooted at
b or vice versa.

3.1 Step 1: Computing fχL1�χL2
(z) and fχL1

(z)

In this section we show two examples that illustrate how to compute the gener-
ating function fχL1�χL2

(z) when L1, L2 ∈ RatU(Σ,C) are subsets of particular
monoids that belong toM (see Definition 1). Recall that the characteristic series
fχL(z) of L ∈ RatU(Σ,C) is rational and so it admits a linear representation.

Example 2. Let L1, L2 ∈ RatU({a, b}, ∅) be defined by two rational characteristic
series χL1 , χL2 (on the free monoid a� ·b�) with linear representations 〈λ1, μ1, γ1〉,
〈λ2, μ2, γ2〉 respectively. Given w = x1 · · ·xn, xi ∈ {a, b}, we have

(χL1 , x1 · · ·xn) = λ1μ1(x1) · · ·μ1(xn)γ1 ,

(χL2 , x1 · · ·xn) = λ2μ2(x1) · · ·μ2(xn)γ2
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and, by a well-known result (see, for instance, chapter 2 in [16]),

(χL1 . χL2 , x1 · · ·xn) = λ1 ⊗ λ2 · μ1(x1)⊗ μ2(x1) · · ·μ1(xn)⊗ μ2(xn) · γ1 ⊗ γ2 ,

where ⊗ is the usual Kronecker product of matrices.
Then, the generating function associated with χL1 . χL2 is

fχL1�χL2
(z) =

∑
w∈{a,b}�

(χL1 . χL2 , w)z|w| =
∑
n≥0

zn
∑

w∈{a,b}�

|w|=n

(χL1 . χL2 , w) =

=
∑
n≥0

znλ1 ⊗ λ2 · (μ1(a)⊗ μ2(a) + μ1(b)⊗ μ2(b))n · γ1 ⊗ γ2 =

= λ1 ⊗ λ2 (I − z(μ1(a)⊗ μ2(a) + μ1(b)⊗ μ2(b)))
−1 · γ1 ⊗ γ2

and belongs to Q[[z]]r.

The next example deals with unambiguous rational trace languages that are
subsets of the monoid (a� · b�)× c� ∈ M.

Example 3. Let L1, L2 ∈ RatU({a, b, c},
c

a∧b) be defined by the rational char-
acteristic series χL1 , χL2 with linear representations 〈λ1, μ1, γ1〉, 〈λ2, μ2, γ2〉 re-
spectively. We define the matrices

Aσ(c) = μ1(σ) ·
∑
k≥0

ckμ1(c)k = μ1(σ) · (I − cμ1(c))−1 (σ ∈ {a, b}) ,

A′
σ(c) = μ2(σ) ·

∑
k≥0

ckμ2(c)k = μ2(σ) · (I − cμ2(c))−1 ,

and the row vectors

Λ1(c) = λ1

∑
k≥0

ckμ1(c)k = λ1 · (I − cμ1(c))−1 ,

Λ2(c) = λ2

∑
k≥0

ckμ2(c)k = λ2 · (I − cμ2(c))−1 .

Note that the entries in Aσ(c), A′
σ(c), Λ1(c) and Λ2(c) belong to Q[[c]]r. There-

fore, for a trace x1 · · ·xnck, xi ∈ {a, b}, we have

(χL1 , x1 · · ·xnck) = [ck]Λ1(c)Ax1(c) · · ·Axn(c)γ1 ,

(χL2 , x1 · · ·xnck) = [ck]Λ2(c)A′
x1

(c) · · ·A′
xn

(c)γ2 .

By setting

A′′
σ(c1, c2) = Aσ(c1)⊗A′

σ(c2), Υ (c1, c2) = Λ1(c1)⊗ Λ2(c2), Γ = γ1 ⊗ γ2 ,

we have

(χL1 . χL2 , x1 · · ·xnc
k) = [ck

1c
k
2 ](Υ (c1, c2) · A′′

x1
(c1, c2) · · ·A′′

xn
(c1, c2) · Γ ) .
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So, the generating function associated with χL1 . χL2 is

fχL1�χL2
(z) =

∑
w∈{a,b}�

k≥0

(χL1  χL2 , wck)z|w|+k =

=
∑
n≥0
k≥0

znzk[ck
1ck

2 ]
∑

w∈{a,b}�

|w|=n

(χL1  χL2 , w) =

=
∑
k≥0

zk[ck
1ck

2 ]
∑
n≥0

x1···xn∈{a,b}n

znΥ (c1, c2) · A′′
x1(c1, c2) · · ·A′′

xn
(c1, c2) · Γ =

=
∑
k≥0

zk[ck
1ck

2 ]Υ (c1, c2)(I − (A′′
a(c1, c2) + A′′

b (c1, c2))z)−1Γ =

= F (z, z) ,

where F (c1, z) = Δc1c2(Υ (c1, c2)(I − (A′′
a(c1, c2)+A′′

b (c1, c2))z)−1Γ ) is the diag-
onal of a rational function. So, the generating function fχL1�χL2

(z) turns out to
be algebraic (see [14]).

3.2 Rational Languages in (((a�
1 · b�

1) × c�
1) · ((a�

2 · b�
2) × c�

2)) × c�
3

Let C be the commutation relation defined by the following diagram:

�� �� �� ��
�

�
�

���
��� �
�

�

�
�

�
��

�
�
�

	
	

	
		

c3

c1 c2

a1 b1 a2 b2

Then, it is easy to observe that there exist four classes M1, . . . ,M4 that de-
scribe the structure of all traces, as shown in the following block-diagrams
(αi ∈ {a1, b1}�, βi ∈ {a2, b2}�),

M1: �
�









cs
3

�
�

�
�

ci1
1

α1

�
�

�
�

�
�

�
�

ci2
2

β1

�
�

�
�
· · · �

�

�
�

c
i2r+1
1

α2r+1

�
�

�
�

�
�
��

�
�

M2: �
�









cs
3

�
�

�
�

ci1
2

β1

�
�

�
�

�
�

�
�

ci2
1

α1

�
�

�
�
· · · �

�

�
�

c
i2r+1
2

β2r+1

�
�

�
�

�
�
��

�
�
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M3: �
�









cs
3

�
�

�
�

ci1
1

α1

�
�

�
�

�
�

�
�

ci2
2

β1

�
�

�
�
· · · �

�

�
�

ci2r
2

β2r

�
�

�
�

�
�
��

�
�

M4: �
�









cs
3

�
�

�
�

ci1
2

β1

�
�

�
�

�
�

�
�

ci2
1

α1

�
�

�
�
· · · �

�

�
�

ci2r
1

α2r

�
�

�
�

�
�
��

�
�

For instance, the trace [a1c3a2c2b2c2]ρC belongs to M3 since its structure is

��







c3

��
��

ε

a1

��
��

��
��

c2
2

a2b2

��
��

�
�
�

��

We now consider trace languages in RatU({a1, b1, c1, a2, b2, c2, c3}, C) and we
prove the following:

Theorem 4. Let L1, L2 ∈ RatU({a1, b1, c1, a2, b2, c2, c3}, C). Then, the generat-
ing function fχL1�χL2

(z) is holonomic.

Proof. Let L1, L2 ∈ RatU({a1, b1, c1, a2, b2, c2, c3}, C) be defined by the rational
characteristic series χL1 , χL2 with linear representations 〈λ1, μ1, γ1〉, 〈λ2, μ2, γ2〉
respectively. Let Λ = λ1 ⊗ λ2 and Γ = γ1 ⊗ γ2. For σ ∈ {a1, b1, a2, b2} and
i = 1, 2 we define the matrices of rational entries

Ci(ci, c3) =
∑

k≥0(ciμ1(ci) + c3μ1(c3))k = (I − (ciμ1(ci) + c3μ1(c3))−1 ,

C′
i(ci, c3) =

∑
k≥0(ciμ2(ci) + c3μ2(c3))k = (I − (ciμ2(ci) + c3μ2(c3))−1 ,

C′′
i (ci, c3, c

′
i, c

′
3) = Ci(ci, c3)⊗ C′

i(c
′
i, c

′
3) ,

Aσ(ci, c3) = μ1(σ)Ci(ci, c3) ,
A′

σ(ci, c3) = μ2(σ)C′
i(ci, c3),

A′′
σ(ci, c3, c

′
i, c

′
3) = Aσ(ci, c3)⊗A′

σ(c′i, c
′
3)

and

T1(z, c1, c3, c
′
1, c

′
3) = (I − z(A′′

a1
(c1, c3, c

′
1, c

′
3) + A′′

b1(c1, c3, c
′
1, c

′
3)))

−1 − I ,

T2(z, c2, c3, c
′
2, c

′
3) = (I − z(A′′

a2
(c2, c3, c

′
2, c

′
3) + A′′

b2(c2, c3, c
′
2, c

′
3)))

−1 − I .
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Then, we define the matrices of algebraic entries

ξ1 =
∑
n≥0

(Δc1,c′1T1(Δc2,c′2C
′′
2 + Δc2,c′2T2) + Δc1,c′1C

′′
1 (Δc2,c′2T2 + Δc2,c′2C

′′
2 ))n ,

ξ2 =
∑
n≥0

(Δc2,c′2T2(Δc1,c′1C
′′
1 + Δc1,c′1T1) + Δc2,c′2C

′′
2 (Δc1,c′1T1 + Δc1,c′1C

′′
1 ))n .

By considering the partition of traces in 4 classes M1, . . . ,M4, we observe that
the generating function fχL1�χL2

(z) can be written as

fχL1�χL2
(z) = f

(1)
χL1�χL2

(z) + f
(2)
χL1�χL2

(z) + f
(3)
χL1�χL2

(z) + f
(4)
χL1�χL2

(z)

where f
(i)
χL1�χL2

(z) =
∑

w∈{Mi}(χL1.χL2, w)z|w|. By noting that f
(i)
χL1�χL2

(z) =
Fi(z, z, z, z) with

F1(c1, c2, c3, z) = Δc3,c′3(Λξ1Γ ) ,

F2(c1, c2, c3, z) = Δc3,c′3(Λ(Δc2,c′2T2)ξ1Γ ) ,

F3(c1, c2, c3, z) = Δc3,c′3(Λ(Δc1,c′1T1)ξ2Γ ) ,

F4(c1, c2, c3, z) = Δc3,c′3(Λ(Δc2,c′2T2)T1ξ2)Γ ) ,

we obtain that the functions f
(i)
χL1�χL2

(z) are holonomic: in fact, the entries in
T1,T2, ξ1, ξ2 are holonomic and we know that the class of holonomic functions is
closed under the operations of diagonal, product and substitution with algebraic
functions. At last, we conclude that fχL1�χL2

(z) is holonomic since it is the sum
of holonomic functions. ��

3.3 Step 2: fχL1�χL2
(z) = fχL1

(z)?

Given two unambiguous rational trace languages L1, L2 ⊆ (((a�
1 · b�

1) × c�
1) ·

((a�
2 · b�

2) × c�
2)) × c�

3, we know that the generating functions fχL1
(z), fχL2

(z)
and fL1∩L2(z) = fχL1�χL2

(z), are holonomic. So, starting from the rational
characteristic series χL1 , χL2 , it is possible to compute three linear differential
equations with polynomial coefficients satisfied by the functions fχL1

(z), fχL2
(z)

and fχL1�χL2
(z) respectively (see [20] for details on computing with holonomic

functions). Useful packages for these computations under Maple may be found
in the Chyzak’s Mgfun Project page (http://algo.inria.fr/chyzak/mgfun.html).

Hence, the problem of verifying whether fχL1�χL2
(z) = fχL1

(z) is reduced
to the problem of testing that the holonomic function fχL1�χL2

(z)− fχL1
(z) is

the zero function. So, we first compute the linear differential equation

d∑
i=0

qi(z)Dig(z) = 0

satisfied by g(z) = fχL1�χL2
(z) − fχL1

(z) =
∑

n≥0 cnz
n. Then, by noting that

zDg(z) corresponds to {ncn} and zkg(z) to {cn−k}, we find a linear recurrence
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equation with polynomial coefficients satisfied by {cn},
∑e

i=0 pi(n)cn−i = 0. At
last, fχL1�χL2

(z) − fχL1
= 0 if and only if ci = 0, i = 0, . . . e, and {0} satisfies

the recurrence equation.

3.4 Conclusions

We conclude with two remarks. We have shown that Inclusion is decidable for
RatU(Σ,C) with respect to a particular commutation relation associated with a
complete binary tree of height 2. Thus, what happens if we consider commutation
relations associated with complete binary trees of arbitrary height (two nodes
commute if and only if one is in the subtree of the other)? Note that traces
in such languages have a serial/parallel structure so it naturally rises a more
general question: is it possible to extend Theorem 4 to unambiguos rational
trace languages with commutation relations as those associated with monoids in
M (see Definition 1)?
Another interesting topic is that of studying the complexity of Inclusion for
RatU(Σ,C), a problem closely related to the complexity of computing with holo-
nomic functions, for which several results are known (see, for instance, [6]).
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Abstract. The generalized LR parsing algorithm for context-free gram-
mars, invented by Tomita in 1986, is extended for the case of Boolean
grammars, which are a recently introduced generalization of context-free
grammars with logical connectives added to the formalism of rules. In
addition to the standard LR operations, Shift and Reduce, the new algo-
rithm uses a third operation called Invalidate, which reverses a previously
made reduction; this makes the algorithm considerably different from its
prototype, though it can still be made to work in time O(n3).

1 Introduction

The generalized LR parsing was introduced in 1986 by Tomita [15] as a poly-
nomial-time method of simulating nondeterminism in the classical Knuth’s LR
[5]. Every time a deterministic LR parser is faced with a choice of actions to
perform (Shift or Reduce), a generalized LR parser performs both actions at the
same time, storing all possible contents of an LR parser’s stack in the form of
a graph. Although the number of possible computations of a nondeterministic
LR parser can exponentially depend on the length of the string, the compact
graph-structured representation always contains O(n) vertices and therefore fits
in O(n2) memory. If carefully implemented, the algorithm is applicable to any
context-free grammar, and its complexity can be bounded by a polynomial of
degree as low as cubic.

Initially, the algorithm was proposed with linguistic applications in mind
[15], and in the recent years there has been a growing interest in the use of this
method in the programming languages community [2]. In particular, efficient im-
plementation techniques are being researched [3], and application-oriented parser
generators are being implemented [6]. The algorithm has also been extended for
conjunctive grammars by the author [8].

In this paper, the generalized LR parsing algorithm is further extended to
handle the case of Boolean grammars [10], which are context-free grammars
augmented with Boolean operations in the formalism of rules. Boolean grammars
can specify many abstract non-context-free languages, such as {anbncn |n � 0},
{ww | w ∈ {a, b}∗} and {a2n | n � 0}, the latter being outside of the Boolean
closure of the context-free languages. Another evidence of their expressive power
is given by a fairly compact grammar for the set of well-formed programs in a
simple model programming language [12], which is the first specification of any
programming language by a formal grammar from a computationally feasible
� Supported by the Academy of Finland under grant 206039

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 362–373, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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class. The generalized LR algorithm presented in this paper allows to convert
this particular grammar to a square-time correctness checker. The algorithm
has been implemented in an ongoing parser generator project [9], and such a
correctness checker has been successfully produced out of that Boolean grammar.

The most interesting quality of the proposed algorithm is that the negation
is implemented by removing arcs from the graph-structured stack. In terms of
the theory of parsing schemata [14], this means that the atomic items can be
not only gained, but also lost, and regained back, etc. This is a clear departure
from the paradigm of parsing as deduction [13]. Establishing the correctness of
a parsing algorithm that behaves in such an uncommon way is a new task to be
solved. Let us see how this can be done.

2 Boolean Grammars

Boolean grammars are context-free grammars augmented with propositional con-
nectives. In addition to the implicit disjunction represented by multiple rules for
a single nonterminal, Boolean grammars include explicit conjunction and nega-
tion in the formalism of rules.

Definition 1 ([10]). A Boolean grammar [10] is a quadruple G = (Σ,N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A→ α1& . . .&αm&¬β1& . . .&¬βn (m + n � 1, αi, βi ∈ (Σ ∪N)∗), (1)

while S ∈ N is the start symbol of the grammar. For each rule (1), the objects
A → αi and A → ¬βj (for all i, j) are called conjuncts, positive and negative
respectively. A conjunct with unknown sign can be denoted A → ±γ, which
means “A → γ or A → ¬γ”. Let conjuncts(P ) be the sets of all conjuncts, let
uconjuncts(P ) = {A→ γ |A→ ±γ ∈ conjuncts(P )}.

A Boolean grammar is called a conjunctive grammar [7], if negation is never
used, i.e., n = 0 for every rule (1); it degrades to a standard context-free grammar
if neither negation nor conjunction are allowed, i.e., m = 1 and n = 0 for all rules.
Assume, without loss of generality, that m � 1 in every rule. Intuitively, a rule (1)
can be read as “if a string satisfies the syntactical conditions α1, . . . , αm and does
not satisfy any of the syntactical conditions β1, . . . , βn, then this string satisfies
the condition represented by the nonterminal A”. Formal semantics of Boolean
grammars (i.e., the language specified by a grammar) is defined using systems of
language equations with concatenation and all set-theoretic operations, similarly
to the well-known characterization of the context-free grammars due to Ginsburg
and Rice [4], which uses language equations with concatenation and union.

Definition 2. Let G = (Σ,N, P, S) be a Boolean grammar. The system of lan-
guage equations associated with G is a system over Σ in variables N , in which
the equation for each variable A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[ m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(for all A ∈ N) (2)
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A vector L = (L1, . . . , Ln) is called a naturally reachable solution of (2) if
for every finite substring-closed M ⊆ Σ∗ and for every string u /∈M (such that
all proper substrings of u are in M) every sequence of vectors of the form

L(0), L(1), . . . , L(i), . . . (3)

(where L(0) = (L1 ∩ M, . . . , Ln ∩ M) and every next vector L(i+1) �= L(i) in
the sequence is obtained from the previous vector L(i) by substituting some j-th
component with ϕj(L(i)) ∩ (M ∪ {u})) converges to

(L1 ∩ (M ∪ {u}), . . . , Ln ∩ (M ∪ {u})) (4)

in finitely many steps regardless of the choice of components at each step.

Let (L1, . . . , Ln) be the naturally reachable solution of the system associated
with a grammar; then the language LG(Ai) generated by every i-th nonterminal
A can be defined as Li, while the language of the grammar is L(G) = LG(S).

Despite the increased descriptive power, the theoretical upper bound for the
parsing complexity for Boolean grammars is still O(n3) [10], the same as in
the context-free case. As it will be demonstrated in this paper, a more practical
parsing algorithm, the Generalized LR, can be generalized for Boolean grammars
as well, and it also retains its worst-case cubic-time complexity.

3 The Parsing Table

Let us begin defining the generalized LR parsing algorithm for Boolean grammars
from its parsing table. Internally, it is the same as in the deterministic context-
free case [1, 5], but requires a newly formulated construction.

The first step is to construct a deterministic finite automaton over the alpha-
bet Σ∪N , called the LR(0) automaton, which recognizes the bodies of grammar
rules in the stack. In our case this step is the same as in the context-free case.
While in the context-free case the states of the LR(0) automaton are sets of dot-
ted rules, dotted unsigned conjuncts are used in the case of Boolean grammars:

Definition 3. Let G = (Σ,N, P, S) be a Boolean grammar. A→ α · β is called
a dotted conjunct, if the grammar contains a conjunct A → ±αβ. Let dc(P )
denote the (finite) set of all dotted conjuncts.

Let the set of states be Q = 2dc(P ). In order to define the initial state and
the transitions between states, the functions closure and goto are used. They
are defined as in the classical context-free LR theory, with the only difference
that the objects they deal with are called conjuncts rather than rules.

For every set of dotted conjuncts X and for every s ∈ Σ ∪N , define

goto(X, s) = {A→ αs · β |A→ α · sβ ∈ X} (5)

Next, closure(X) is defined as the least set of dotted conjuncts that contains
X and satisfies the condition that for each A → α · Bγ ∈ closure(X) (where
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α, γ ∈ (Σ ∪ N)∗, B ∈ N) and for each conjunct B → ±β ∈ conjuncts(P ) it
holds that B → ·β ∈ closure(X).

Define the initial state of the automaton as q0 = closure({S → ·σ | S →
±σ ∈ conjuncts(P )}), while the transition from a state q ⊆ dc(P ) by a symbol
s ∈ Σ∪N is defined as follows: δ(q, s) = closure(goto(q, s)). The state ∅ ⊂ dc(P )
is an error state and will be denoted by −. Note that, in the terminology of Aho,
Sethi and Ullman [1], δ(q, a) = q′ (a ∈ Σ) is expressed as “Action[q, a] =
Shift q′”, while δ(q, A) = q′ (A ∈ N) means “Goto(q, A) = q′”.

The finite automaton constructed so far recognizes the bodies of the con-
juncts, providing the pertinent information in the states it computes. The other
component of an LR automaton, the reduction function, decodes this information
from the numbers of the states and reports which rules can be applied.

Let Σ�k = {w | w ∈ Σ∗, |w| � k}. For any string w, define

Firstk(w) =
{

w, if |w| � k
first k symbols of w, if |w| > k

(6)

This definition is extended to languages as Firstk(L) = {Firstk(w) | w ∈ L}.
In the case of the context-free SLR(k), the reduction function is constructed

using the sets Followk(A) ⊆ Σ�k (A ∈ N) that specify the possible continua-
tions of strings generated by a nonterminal A. This is formalized by context-free
derivations: u ∈ Followk(A) means that there exists a derivation S =⇒∗ xAy,
such that Firstk(y) = u. The corresponding notion for the case of Boolean
grammars is, in the absence of derivation, somewhat harder to define:

Definition 4 ([11]). Let us say that u ∈ Σ∗ follows σ ∈ (Σ ∪ N)∗ if there
exists a sequence of conjuncts A0 → ±α1A1β1, A1 → ±α2A2β2, . . . , A�−1 →
±α�A�β�, A� → ±ησθ, such that A0 = S and u ∈ LG(θβ� . . . β1)

Now, for every nonterminal A ∈ N , define Firstk(A) = Firstk(LG(A)) and
Followk(A) = {Firstk(u) | u follows A}.

Already for conjunctive grammars there cannot exist an algorithm to com-
pute the sets Firstk and Followk precisely [8]. However, since the LR al-
gorithm uses the lookahead information solely to eliminate some superfluous
reductions, if the sets Firstk(A) and Followk(A) are replaced by some of
their supersets, the resulting LR parser will still work, though it will have
to spend extra time doing some computations that will not influence the re-
sult. Algorithms to construct suitable supersets Pfirstk(A) ⊇ Firstk(A) and
Pfollowk(A) ⊇ Followk(A) have been developed for top-down parsing of
Boolean grammars and can be found in the corresponding technical report [11];
let us reuse them for LR parsing.

The sets Pfollowk(A) are used to define the reduction function R : Q ×
Σ�k → 2uconjuncts(P ), which tells the conjuncts recognized in a given state if
the unread portion of the string starts with a given k-character string. In the
SLR(k) table construction method, it is defined as follows:

R(q, u) = {A→ α | A→ α· ∈ q, u ∈ Pfollowk(A)} (7)
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for every q ∈ Q and u ∈ Σ�k. In the notation of Aho, Sethi and Ullman, A →
α ∈ R(q, u) means “Action[q, u] = Reduce A→ α”, assuming A→ α ∈ P .

As in the context-free case, the states from Q \ {−} can be enumerated with
consecutive numbers 0, 1, . . . , |Q| − 1, where 0 refers to the state q0.

4 The Algorithm

The new LR-class parsing algorithm for Boolean grammars is a generalization
of the algorithm for conjunctive grammars [8], which in turn extends Tomita’s
algorithm [15] for context-free grammars.

All three algorithms share a common data structure: a graph-structured stack,
introduced by Tomita [15] as a compact representation of the contents of the
linear stack of Knuth’s LR algorithm in all possible branches of nondeterministic
computation. The graph-structured stack is an oriented graph with a designated
source node. The nodes are labelled with the states of the LR automaton (such as
the SLR(k) automaton constructed in the previous section), of which the source
node is labelled with the initial state. The arcs are labelled with symbols from
Σ ∪N . There is a designated nonempty collection of nodes, called the top layer
of the stack. Every arc leaving one of these nodes has to go to another node from
the top layer. The labels of these nodes should be pairwise distinct, and hence
there can be at most |Q| top layer nodes.

Fig. 1. Sample contents of the graph-structured stack

Consider the graph in Figure 1: the leftmost node labelled 0 is the source
node; the three rightmost nodes labelled 5, 2 and 6 are assumed to form the top
layer. There is another node labelled 2 (the direct predecessor of 5), which is not
in the top layer.

Initially, the stack contains a single source node, which at the same time forms
the top layer. The computation of the algorithm is an alternation of reduction
phases, which modify the nodes in the top layer without reading the input, and
shift phases, each reading and consuming a single input symbol and forming an
entirely new top layer as a successor of the former top layer.

The shift phase is done identically in all three algorithms. Let a be the next
input symbol. For each top layer node labelled with a state q, the algorithm looks
up the transition table, δ(q, a). If δ(q, a) = q′ ∈ Q, then a new node labelled q′

is created and q is connected to q′ with an arc labelled a; this action is called
Shift q′. If δ(q, a) = −, no new nodes are created, and this condition is called
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“Local error”. The nodes created during a shift phase form the new top layer
of the graph, while the previous top layer nodes are demoted to regular nodes.
The branches of the graph-structured stack that do not get extended to the new
top layer (due to local errors during the shift phase) are removed; if this is the
case for all the nodes, then all the graph is effectively deleted, and the algorithm
terminates, reporting a syntax error.

In Figure 2(a) the top layer contains the nodes 1, 2, 3 and 4. Since δ(1, a) = 5,
δ(2, a) = − and δ(3, a) = δ(4, a) = 6, a new top layer formed of 5 and 6 is created,
while 2 and its predecessors that were disconnected from the new top layer are
accordingly removed from the stack.

Fig. 2. (a) Shifting; (b) Reductions in context-free and (c) conjunctive cases

The reduction phase in each of the cases amounts to doing some identical
transformations of the top layer until the stack comes to a stable condition,
i.e., no further transformations are applicable. The difference between the three
algorithms is in the particular transformations used.

In the context-free case [15], the only operation is reduction. Suppose there
exists a top layer node q, a node q′ and a rule A→ α, such that A→ α ∈ R(q)
and q′ is connected to q by a path α. Then the algorithm can perform the
operation “Reduce A→ α” at q′, adding a new arc labelled with A, which goes
from q′ to a top layer node labelled δ(q′, A). If there is no node δ(q′, A) in the
top layer, it is created. This case is illustrated in Figure 2(b).

In the conjunctive case [8], reduction is still the only operation. However,
now rules may consist of multiple conjuncts, and hence the conditions of per-
forming a reduction are slightly more complicated. Let A → α1& . . .&αm be a
rule, let q be a node and let qi1 , . . . , qim be top layer nodes, such that, for all j,
A → αj ∈ R(qij ) and q is connected to each qij by a path αj . The operation
“Reduce A→ α1& . . .&αm” can be done, adding a new nonterminal arc A from
q to a top layer node δ(q, A). See Figure 2(c).

The case of Boolean grammars is much more complicated. There are two op-
erations: reduction, which is the same as in the previous cases, but with yet more
complicated prerequisites, and invalidation, which means removing an arc placed
by an earlier reduction. In order to reduce by a rule A→ α1& . . .&αm&¬β1& . . .
&¬βn from a node q, this q should be connected to the top layer by each of the
paths α1, . . . , αm and by none of the paths β1, . . . , βn. This nonexistence of
paths is shown in Figure 3(left) by dotted lines ending with crosses. This allows
the algorithm to do “Reduce A → α1& . . .&αm&¬β1& . . .&βn”, adding an arc
labelled A from q to δ(q, A) in the top layer.
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Fig. 3. Reduction phase for Boolean grammars: Reduce and Invalidate

Invalidation is the opposite of reduction. Suppose there exists a node q and
an arc labelled with A from q to a node in the top layer, such that the conditions
for making a reduction by any rule for A from the node q are not met – i.e., for
every rule A → α1& . . .&αm&¬β1& . . .&βn for A either for some i there is no
path from q to the top layer labelled αi, or for some j there exists a path from
q to the top layer with the labels forming βj . Then the earlier reduction (which
added this A arc to the graph) has to be invalidated, by removing the arc from
q to the top layer node δ(q, A). Note that an invalidation of an arc can make the
graph disconnected.

Let us note that in the case of context-free and conjunctive grammars, in the
absence of negation, arcs can only be added, and the conditions for invalidation
would never hold. On the other hand, if there is negation, then a reduction by
a rule A → α&¬β at a node q can be made at the time when there is a path
α from q to the top layer, but there is no path β; however, subsequent reduc-
tions may cause this path β to appear, rendering the earlier reduction invalid.
This is something that does not have an analog in LR parsing for negation-free
grammars.

The reduction phase as a whole is defined by the following nondeterministic
algorithm:

while any reductions or invalidations can be done
choose a nonempty set of reductions/invalidations to do
add/remove these arcs simultaneously

The use of the nondeterminism leaves open a dangerous possibility of different
computations’ yielding different results. Also, if two possible actions are being
done at once, one of them can change the graph-structured stack so that the pre-
requisites for making the other will no longer hold. Hence this kind of simultane-
ous transformation arouses natural suspicions regarding its validity. However, in
Section 5 below the correctness of the algorithm will be proved for any possible
choice of reductions/invalidations at every step, under certain reasonably weak
assumptions on the grammar.

One possible implementation of the reduction phase is to do just one action
at once; this is the obvious approach, yet it can theoretically lead to exponen-
tial time complexity. The implementation described in Section 6 does all valid
reductions and invalidations at every step, which allows to prove a polynomial
complexity upper bound.
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Except for these major differences in the reduction phase, the three algo-
rithms are identical in all other respects. Following is the general schedule of the
generalized LR parsing:

Input: a string w = a1 . . . an.
Let the stack contain a single node x labelled q0, let the top layer be {x}.
do the Reduction phase using lookahead Firstk(w)
for i = 1 to |w|

do the Shift phase using ai

if the top layer is empty, then Reject
do the Reduction phase using lookahead Firstk(ai+1 . . . an)
remove the nodes unreachable from the source node

if there is an arc S from the source node to δ(q0, S) in the top layer, then
Accept

else
Reject

5 Proof of Correctness

Let us impose a certain weak condition on the grammar, which guarantees the
algorithm’s correctness.

Definition 5. Let G be a Boolean grammar. Define the grammar

G+ = (Σ,N, {A→ α1& . . .&αm | A→ α1& . . .&αm&¬β1& . . .&¬βn ∈ P}, S)

The original grammar G is said to have a negatively fed cycle, if there exists
a sequence of conjuncts A1 → ±η1A2θ1, A2 → ±η2A3θ2, . . .A� → ±η�A1θ�,
such that ε ∈ LG+(ηi) and ε ∈ LG+(θi) for all i, and also there exists another
sequence of conjuncts B1 → ±μ1B2ν1, B2 → ±μ2B3ν2, . . .Bk → ¬β, where
ε ∈ LG+(νj) and A1 = B1.

Generally, a negatively fed cycle is something very unnatural, which one
would not typically write (unless aiming to produce a counterexample for this
algorithm, of course!), and which can be easily removed from a grammar. For
example, the grammar S → S | a&¬aE, E → ε, which generates the language
∅, contains such a cycle (� = k = 1, A1 = B1 = S), and it can indeed lead the
algorithm astray (towards accepting ε). In the following it will be required that
a grammar has no negatively fed cycles.

In order to analyze the LR parsing algorithm, it is convenient to redefine the
graph-structured stack by augmenting its nodes with the information on when
they were added: a layer number corresponding to a position in the input. There
is no need to store this extended information in an implementation; simply the
properties of the algorithm become much clearer in these terms:

Definition 6. Let G = (Σ,N, P, S) be a Boolean grammar, let (Q, q0, δ, R) be
the SLR(k) automaton, let w = a1 . . . a|w| be the input string.
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The graph-structured stack is an acyclic graph with a set of vertices V ⊆
Q×{0, 1, . . . , |w|} and with the arcs labelled with symbols from Σ ∪N , such that
the following condition holds: for every arc from (q′, p′) to (q′′, p′′) labelled with
s ∈ Σ ∪N , p′ � p′′ and δ(q′, s) = q′′.

For each p (0 � p � n) the set of all vertices of the form (q, p), where q ∈ Q,
is called the p-th layer of the graph. The nonempty layer with the greatest number
is called the top layer.

Definition 7. An arc from a node (q, p) to a node (δ(q, s), p′) labelled s (s ∈
Σ ∪ N) is called correct if and only if ap+1 . . . ap′ ∈ LG(s) and, in the case
s = A ∈ N , Firstk(ap+1 . . . an) ∈ Pfollowk(A).

A correct arc is called reachable if and only if either it originates from the
source node, or it originates from a node to which there comes a correct arc
known to be reachable.

Let 0 � i � |w|. A reachable correct arc is called i-reaching if and only if
either it goes to the layer i, or it goes to a node, from which there originates a
reachable correct arc known to be i-reaching.

The goal of the whole algorithm is to construct the graph comprised of all
reachable and |w|-reaching correct arcs. Let us first formulate the correctness
statements for individual phases.

Lemma 1 (The computation done by the reduction phase). Let G be
a Boolean grammar without negatively fed cycles, let (Q, q0, δ, R) be an SLR(k)
automaton, let w ∈ Σ∗ be an input string, let p � 0. Suppose the graph-structured
stack contains exactly the following arcs:

– all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1,
– all reachable and p-reaching correct terminal arcs coming to the layer p.

Then every computation of the reduction phase terminates and constructs a graph
with exactly the following arcs:

– all reachable and p-reaching correct arcs going to the layers 0, 1, . . . , p− 1, p,
– depending on the computation, some set of nonterminal arcs within the layer

p that are not reachable from the source node.

The reduction phase followed by the removal of unreachable arcs yields a graph
consisting of exactly all reachable and p-reaching correct arcs going to the layers
0, 1, . . . , p− 1, p.

The proof of the lemma is technically difficult; it proceeds as follows. First, it
is established that the reduction phase always terminates, and every computation
of the reduction phase ends with the same graph (modulo reachability). Second,
a single “model computation” is presented, which constructs exactly what is
stated in Lemma 1. Then it is left to conclude that all computations produce
the same correct graph.

Lemma 1 confers the essence of the reduction phase. Let us now determine
what does the shift phase do.
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Lemma 2 (The computation done by the shift phase). Let the graph
contain exactly all reachable and p-reaching correct arcs up to the layer p. Then
the shift phase from the layer p to the layer p + 1 constructs a graph with the
following arcs:

– all reachable and (p + 1)-reaching correct arcs to the layers up to p;
– all reachable and (p + 1)-reaching correct terminal arcs to the layer p + 1.

These lemmata can be combined to establish the algorithm’s correctness.

Theorem 1 (Correctness of the algorithm). Let G be a Boolean grammar
without negatively fed cycles, let (Q, q0, δ, R) be the SLR(k) automaton for G,
let w ∈ Σ∗ be an input string. Then the generalized LR algorithm constructed
with respect to G and (Q, δ,R), terminates on w, and:

– After i iterations of the main loop, the graph-structured stack contains all
reachable and i-reaching correct arcs to the layers 0, 1, . . . , i.

– The string is accepted if and only if w ∈ L(G).

6 Implementation

The overall composition of the algorithm has been given in Section 4, and it can
be directly used in an implementation. It remains to give an algorithm for doing
the reduction phase. The results of Section 5 imply that it can be implemented
in many different ways, and the algorithm will always remain correct. The im-
plementation suggested in this section is based upon doing all possible actions
at every step of the reduction phase, and upon utilizing some straightforward
breadth-first graph search techniques.

Definition 8. Consider a fixed state of the graph-structured stack. For each
vertex v and for each number � � 0, let predecessors�(v) be the set of vertices
that are connected to v with a path that is exactly � arcs long.

Now the algorithm for doing the reduction phase reads as follows:

while the graph can be modified
// Conjunct gathering
let x[ ] be an array of sets of vertices, indexed by conjuncts.
for each node v = (q, ptop) in the top layer

for each A→ α ∈ R(q, u)
x[A→ α] = x[A→ α] ∪ predecessors|α|(v)

// Reductions
let valid be a set of arcs, initially empty
for each rule A→ α1& . . .&αm&¬β1& . . .&¬βn ∈ P

for each node v ∈
⋂m

i=1 x[A→ αi] \
⋃n

i=1 x[A→ βi]
if v is not connected to the top layer by an arc labelled A, then

add an arc from v to the top layer labelled A
valid = valid ∪ {the arc from v to the top layer labelled A}



372 Alexander Okhotin

// Invalidations
for each arc (v′, v) going to the top layer and labelled A

if this arc is not in the set valid, then
remove the arc from the graph

end while

On the stage of conjunct gathering, the algorithm scans the stack and de-
termines, which reductions and invalidations can possibly be done. The set x[ ]
of gathered conjuncts stores this information, which refers to the state of the
graph at the time of conjunct gathering. Then these operations are applied se-
quentially on the basis of the gathered conjuncts. This ensures that all reductions
and invalidations are being done independently.

Let us give an upper bound for the complexity of this implementation of the
reduction phase, and of the algorithm as a whole. The number of iterations in
each reduction phase should be O(n), because the dependencies of the arcs upon
each other are O(n) deep, and hence O(n) parallel applications of all possible
reductions and invalidations should be enough. It is worth note that if these
operations are applied in series, then exponential time can be reached.

The conjunct gathering stage computes predecessors� a constant number of
times. Computing the set of predecessors involves considering O(n) nodes, each
of which has O(n) predecessors, and thus each conjunct gathering stage takes
O(n2) steps. The reduction and invalidation stages take O(n) time.

This yields a cubic upper bound for the complexity of the reduction phase,
hence an O(n4) upper bound for the whole algorithm. The worst-case time can
be improved to O(n3) by using a clumsy method for conjunct gathering [8].

7 On Parsing for Boolean Grammars

Another parsing method for Boolean grammars is a generalization of the well-
known recursive descent [11]. As in the context-free case, the rules for each
nonterminal A ∈ N are mechanically transcribed into a procedure A(), which
performs the parsing. The choice of a rule is determined by an almost standard
LL(k) table, conjunction is implemented by scanning the input multiple times,
while the machinery of exception handling is used to implement negation. This
method is applicable to a proper subset of Boolean grammars, which is likely
limited to the Boolean closure of the LL(k) context-free languages.

The generalized LR algorithm proposed in this paper is, in contrast, applica-
ble to any Boolean grammar. It is as easy to implement as its prototypes [8, 15]
and performs as efficiently. However, a quick glance at the (omitted) proof of its
correctness shows that its mathematical justification is much more complicated.
Let us try to consider it in terms of the theory of parsing schemata [14].

A parsing schema consists of a set of elementary propositions (items), axioms
(items assumed to be true) and inference rules, which are used to deduce the
truth of other items [14]. In the case of Boolean LR parsing, the items are the
arcs in the stack, and the parser manipulates them as bits. However, the bits
are not only set, but also reset and set back again, which certainly does not
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fit into the deductive paradigm. The algorithm actually conducts a search for a
solution of a Boolean equation. It would be interesting to extend the framework
of parsing schemata to explain such “nonmonotonic” parsing.

Generally, it can be concluded that the major parsing techniques have been
extended to Boolean grammars without loss of their feasibility. This gives further
evidence that this theoretically defined family can be suitable for practical use.
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Abstract. We present two new results on 2-collapsing words. First, we
show that the language of all 2-collapsing words over 2 letters is not
context-free. Second, we prove that the length of a 2-collapsing word
over an arbitrary finite alphabet Σ is at least 2|Σ|2 thus improving the
previously known lower bound |Σ|2 + 1.

Introduction

Throughout the word ‘language’ means a language over a fixed finite alphabet Σ
and the word ‘automaton’ means a deterministic finite automaton with the input
alphabet Σ. Recall that such an automatonA = 〈Q,Σ, δ〉 is defined by specifying
a finite state set Q and a transition function δ : Q × Σ → Q. The function δ
naturally extends to the free monoid Σ∗; this extension is still denoted by δ. For
each v ∈ Σ∗ and q ∈ Q we write q . v = δ(q, v) and put Q . v = {q . v | q ∈ Q}.

The deficiency of a word v ∈ Σ+ with respect to an automaton A is the
number df(v) = |Q| − |Q . v|. An automaton A is said to be n-compressible
if there is a word v ∈ Σ∗ such that df(v) ≥ n (the word v is then called
n-compressing with respect to A). A word w ∈ Σ∗ is called n-collapsing if it
is n-compressing with respect to every n-compressible automaton whose input
alphabet is Σ. Sauer and Stone [12] were arguably the first to introduce n-
collapsing words (under the name ‘words with property Δn’); they did it in a
purely combinatorial context. In particular, in [12] it was proved that such words
exist for every n, a fact that is not trivial a priori. In [11] and [1] n-collapsing
words have been applied to solving certain problems of universal algebra, the
theory of transformation semigroups, and the theory of profinite semigroups.
Connections between n-collapsing words and the Černý conjecture, a well-known
open problem in automata theory, have been discussed in [3, 4, 9].

The study of the language Cn of all n-collapsing words was initiated in [5],
where in particular it was announced that for |Σ| > 1 and n > 1 this language
is not regular [5, Proposition 3]. (We note that a detailed proof of this fact
is given in [5] only in case n = 2.) In [2] it is shown that the language C2
is context-sensitive. Thus, in order to determine the location of C2 within the
classical Chomsky hierarchy, it remains to find out whether or not this language
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is context-free. In Section 2 of the present note we show that C2 is not context-
free at least for |Σ| = 2.

Yet another intriguing open question about Cn concerns the length of the
shortest words in Cn. (We mention in passing that this question also may be
of certain interest from the viewpoint of possible applications of n-collapsing
words in biocomputing, see a discussion in the introduction to [4].) The problem
of determining the minimum possible length of a n-collapsing word as a function
c(n, t) of n and t = |Σ| was posed already in [12]. The best known bounds for
c(n, t) have been obtained in [9]:

tn + n− 1 ≤ c(n, t) ≤ t
1
2 n(n+1) + (n + 1)t

1
2 n(n+1)−1 + · · ·+ nt. (1)

As for exact values of this function, only two of them have been found so far:
c(2, 2) = 8 [12] and c(2, 3) = 21 [4]. In Section 3 we exhibit a new lower bound
for the length of 2-collapsing words, namely 2t2, thus improving the lower bound
t2 + 1 that follows from (1) in case n = 2.

1 Preliminaries About 2-Collapsing Words

We start with recalling a simple result from [9]. A word w ∈ Σ∗ is said to be
2-full, if it has all the words of length 2 over Σ among its factors.

Proposition 1 ([9, Theorem 4.2]). Any 2-collapsing word is 2-full.

All our results make an essential use of the membership criterion for the lan-
guage C2 proved in [3]. In its full generality this criterion is rather sophisticated
but we need only some of its relatively simple special cases. For the reader’s
convenience we present them here in the form adapted to the use in this paper.

Let us choose an arbitrary letter b ∈ Σ and denote Π = Σ \ {b} (we assume
that |Σ| > 1). Then any word w ∈ Σ+ can be uniquely represented in the form

w = bα0p1b
α1p2 · · · pmbαm (2)

with α0, αm ≥ 0; αi > 0, i = 1, . . . ,m − 1; pi ∈ Π+, i = 1, . . . ,m; m ≥ 0.
The factor pi is said to be an inner segment of w if αi−1 ·αi �= 0, i.e. there is an
occurrence of the letter b on both sides of pi. By S we denote the set of all inner
segments of the word w. Let FG(Π) denote the free group over the alphabet
Π ; clearly, S can be treated as a subset of FG(Π). We extend the operations of
the group FG(Π) to its subsets in a natural way so that, for instance, H−1 for
H ⊆ FG(Π) means {h−1 | h ∈ H}.

Proposition 2. Given a 2-collapsing word w ∈ Σ+, for any choice of a letter
b ∈ Σ, the set S of all inner segments of the word w should satisfy the following
conditions:

(i) the set S generates the group FG(Π);
(ii) for any choice of a subset P ⊆ S, if P = S \ P , and HP is the subgroup of

FG(Π) generated by the set P ∪ (P ·P −1
), then the index of HP in FG(Π)

is not greater than 2.
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Proof. Proposition 2 is a special case of a more general result, see [3, Proposition
3.1]. For the reader’s convenience and trying to make this note to a reasonable
extent self-contained, we have extracted a proof of our proposition from the proof
of that general result in [3].

Arguing by contradiction, suppose that for some choice of b ∈ Σ and P ⊆ S,
the subgroup HP fulfills one of the two assumptions:

(a) |FG(Π) : HP | > 2;
(b) P = S and |FG(Π) : HP | = 2.
In the case (a), take a subgroup H containing HP and such that 2 < |FG(Π) :

H | <∞. Such a subgroup H always exists. Indeed, if HP itself is of finite index,
we can simply set H = HP . If the index of HP in FG(Π) is infinite, then by
M. Hall’s classical result [8], HP as a finitely generated subgroup is equal to
the intersection of all subgroups of finite index containing HP . Some of these
subgroups must have index greater than 2 and thus can be taken as H .

Starting from the chosen subgroup H we build an automatonAH = 〈Q,Σ, δ〉.
Its state set Q is the set of all left cosets of FG(Π) with respect to H . We
note that Q is finite since the index of H is finite. Each element of Q can be
represented as Hp for some word p ∈ Π∗. To define the transition function δ,
we fix an arbitrary coset H ′ �= H . Then we set:

Hp . a = Hpa for all a ∈ Π ,
Hp . b = Hp if Hp �= H ,
H . b = Hp0 with p0 ∈ P if P �= ∅,
H . b = H ′ if P = ∅.
The third rule may seem to be non-deterministic but this is not the case since

for any p0, p1 ∈ P we have p0p
−1
1 ∈ HP ⊆ H whence Hp1 = Hp0p

−1
1 p1 = Hp0.

By definition all letters a ∈ Π act on the set Q as permutations, while
Q . b = Q \ {H}. Since the action of a group on its left cosets with respect to a
subgroup is transitive, there exists a word p ∈ Π∗ such that H ∈ Q . bp. This
easily implies that df(bpb) ≥ 2 whence the automaton AH is 2-compressible.

Next we consider the sequence

Q . bα0 , Q . bα0p1, Q . bα0p1b
α1 , . . . , Q . bα0p1b

α1 · · · pmbαm = Q .w

of sets and show by induction that df(w) = 1.
Induction basis. If α0 �= 0, then Q . bα0 = Q\{H}, else Q . bα0p1b

α1 = Q\{H}.
Induction step. Assume that Q . bα0p1b

α1p2 · · · bαk−1 = Q\ {H} for some k <
m. Then Q . bα0p1b

α1p2 · · · bαk−1pk = Q \ {H . pk}. By definition H . pk = Hpk.
If pk ∈ P ⊂ H then Hpk = H else if pk ∈ P then Hpk = Hp0. In both cases
Q . bα0p1b

α1p2 · · · bαk−1pkb
αk = Q \ {H}. If αm �= 0, then Q .w = Q \ H , else

Q .w = Q \ {H . pm}. Thus the word w is not 2-compressing with respect to the
2-compressible automaton AH , a contradiction.

Now consider the case (b) in which, we recall, P = S and the subgroup
H = HP = 〈S〉 has index 2 in FG(Π). Let H ′ = FG(Π) \ H ; then {Hw |
w ∈ Π∗} = {H,H ′}. We define an automaton BH = 〈Q,Σ, δ〉 with the state set
Q = {H,H ′, q}, where q is a new symbol. The transition function δ is defined as
follows:
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q . a = q for all a ∈ Σ,
Hp . a = Hpa for all a ∈ Π,
H ′ . b = H ′

H . b = q.
The automaton BH is 2-compressible. Indeed, since H � FG(Π) there exists

a letter a ∈ Π such that H ′a = H , therefore df(bab) ≥ 2.
As in the case (a) we show that df(w) = 1. The induction basis is the same

as in (a).
Induction step. Assume that Q . bα0p1b

α1p2 · · · bαk−1 = Q \ {H} for some k.
Then Q . bα0p1b

α1p2 · · · bαk−1pk = Q\{H . pk}. By definition H . pk = Hpk, in its
turn, Hpk = H since pk ∈ P = S ⊂ H , whence Q . bα0p1b

α1p2 · · · bαk−1pkb
αk =

Q \ {H}.
Thus we again have found a 2-compressible automaton with respect to which

the word w is not 2-compressing. This completes the proof.

Now consider the special case when |Σ| = 2 as it will be essential for the
proof of the main result in Section 2. For such Σ there are only two possible
choices of the ‘distinguished’ letter, and the group FG(Π) is isomorphic to the
group 〈Z,+〉 of integers. Therefore the inner segments of any word w ∈ Σ∗ are
in fact powers of a letter, and so we can consider the set of exponents of these
powers instead of the set of segments. Thus, representing any word w over the
alphabet Σ = {a, b} in the form

w = au0bp1au1 . . . bpm−1aum−1bpm

with u0, pm ≥ 0; ui, pi > 0, i = 1, . . . ,m− 1; m ≥ 0, we assign to it two sets of
positive integers:

Sa = {ui | pi · pi+1 �= 0}, Sb = {pi | ui−1 · ui �= 0}.

Let S be a fixed set of integers. Given a subset P ⊆ S, we put P = S \ P
and define HP to be the subgroup of 〈Z,+〉 generated by the set P ∪ (P − P ).

Proposition 3. Let Σ = {a, b}. A word w ∈ Σ+ is 2-collapsing if and only if
it satisfies the following two conditions:

(i) 〈Sa〉 = 〈Sb〉 = Z;
(ii) for all subsets Pa � Sa and Pb � Sb, each of the subgroups HPa and HPb

has index at most 2 in Z.

Proof. The ‘only if’ part follows directly from Proposition 2. Hence it remains
to prove the ‘if’ part. It is easy to see that if a word fulfills (i) and (ii) then it is
2-full.

Consider an arbitrary 2-compressible automatonA = 〈Q,Σ, δ〉. We note that
if there exists a word v ∈ Σ+ of length not greater than 2 such that df(v) ≥ 2
then also df(w) ≥ 2. If for any word v of length not greater than 2 holds df(v) < 2
then for any letter x ∈ Σ either

Q . x = Q, (3)
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i.e. x acts as a permutation on the state set Q, or

|Q .x| = |Q| − 1 and Q .x2 = Q .x. (4)

It is clear that since A is 2-compressible, there exists at least one letter in Σ
satisfying (4). Besides that, by [3, Lemma 2.5] we may assume that there exists at
least one letter in Σ satisfying (3). Since the conditions (i) and (ii) are symmetric
with respect to a and b, we may assume with no loss that the letter a satisfies
(3) while the letter b satisfies (4).

By e we denote the exception state of the letter b, i.e. the only state in Q\Q .b.
Since b acts as a permutation on the set Q . b there exists a unique state d ∈ Q
such that e . b = d . b. We note that

df(baαb) ≥ 2 if and only if e . aα /∈ {e, d}. (5)

Indeed, the condition df(baαb) ≥ 2 means e, d ∈ Q .(baα) = (Q . b) . aα. Since
Q = {e} ∪Q . b and aα is a permutation on Q we have

Q = {e . aα} ∪ (Q . b) . aα.

Thus e, d ∈ (Q . b) . aα if and only if e . aα /∈ {e, d}.
Consider the orbit E = {e . aα | α ∈ Z} of e and the stabilizer St(e) = {α ∈

Z | e . aα = e} of e under the action of Z on Q defined via the action of the letter
a. Clearly, the index of St(e) in Z is equal to |E|.

Let Pa = St(e) ∩ Sa and consider α ∈ Pa = Sa \ Pa. By definition e . aα �= e
and, if besides that e . aα �= d, then by (5) we get df(baαb) ≥ 2 whence df(w) ≥ 2.
Now assume that e . aα = e . aβ for all α, β ∈ Pa. This means that α−β ∈ St(e),
i.e. all generators of the subgroup HPa belong to St(e) whence HPa ≤ St(e). In
view of the conditions (i), (ii) this implies that either St(e) = Z or St(e) has
index 2 in Z and Pa �= Sa. In the first case A cannot be 2-compressible. In the
second case E = {e, f}, f �= e. If f = d, then again A is not 2-compressible by
(5) whence f �= d. Let α0 ∈ Pa, then e . aα0 �= e, i.e. e . aα0 = f �= d whence by
(5) we obtain that df(baα0b) ≥ 2 and df(w) ≥ 2.

2 The Location of C2 in the Chomsky Hierarchy

In order to prove that the language C2 is not context-free we use the well-known
lemma by Ogden [10], see also [6, Lemma 2.5].

Lemma 1 (Ogden). Given a context-free language L, there exists a positive
integer N such that any word w ∈ L of length at least N admits a factorization
w = xuyvz such that

1) at least one of the factors u and v is non-empty;
2) the length of the factor uyv does not exceed N ;
3) xukyvkz ∈ L for each positive integer k.

Theorem 1. The language C2 of all 2-collapsing words over the alphabet Σ =
{a, b} is not context-free.
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Proof. Arguing by contradiction, suppose that C2 is a context-free language.
Then its intersection with the regular language R = a(bb)∗ba(bb)∗ba2(bb)∗ba
is also context-free. By Proposition 3, the intersection consists of all words
abp1abp2a2bp3a such that the numbers p1, p2, p3 are odd, and the set Sb =
{p1, p2, p3} satisfies the conditions of the proposition. (It is easy to see that
the set Sa = {1, 2} satisfies the conditions of Proposition 3.) This gives us the
following bunch of restrictions on the numbers p1, p2, p3:

1. g. c. d.(p1, p2) = 1;
2. g. c. d.(p2, p3) = 1;
3. g. c. d.(p1, p3) = 1;
4. g. c. d.(p1, p2 − p3) = 1;
5. g. c. d.(p2, p1 − p3) = 1;
6. g. c. d.(p3, p2 − p1) = 1;
7. g. c. d.(p2 − p1, p3 − p1) = 2.

Let N be the constant from Ogden’s lemma applied to the context-free lan-
guage C2 ∩ R. Let M be an even number such that M > N and consider the
word

w = abp1abp2a2bp3a ∈ R
with p1 = M ! − 1, p2 = M ! + 1, p3 = (M + 1)! − 1. We aim to show that w
is in C2 ∩ R. Indeed, let us check that the chosen numbers p1, p2, p3 satisfy the
restrictions 1–7.

1. Let d = g. c. d.(M ! − 1, M ! + 1). Obviously d is odd and divides the
difference M ! + 1− (M !− 1) = 2, consequently d = 1.

2. In the same way, if d = g. c. d.(M ! + 1, (M + 1)! − 1) then d divides the
sum

M ! + 1 + (M + 1)!− 1 = M !(M + 2) = 2M !
(M + 2)

2
.

Here the number
M + 2

2
< M is an integer since M is even. Therefore d is a

product of integers less than or equal to M , but M !+1 is coprime with any such
integer whence we obtain d = 1 also in this case.

3. g. c. d.(M ! − 1, (M + 1)! − 1) = 1 by the same reason as above since the
difference (M + 1)!− 1− (M !− 1) = M !M is a product of integers less than or
equal to M .

4. We obtain

g. c. d.(M !− 1, (M + 1)!− 1− (M ! + 1)) = g. c. d.(M !− 1, M !M − 2) = 1

in the same way as in the case 2 since M !M − 2− 2(M !− 1) = M !(M − 2).
5. g. c. d.(M ! + 1, (M + 1)!− 1− (M !− 1)) = g. c. d.(M ! + 1, MM !) = 1.
6. g. c. d.((M + 1)!− 1, M ! + 1− (M !− 1)) = g. c. d.((M + 1)!− 1, 2) = 1.
7. g. c. d.(M ! + 1− (M !− 1), (M + 1)!− 1− (M !− 1)) =

g. c. d.(2, MM !) = 2.
Thus we have proved that w ∈ C2 ∩ R. It is clear that |w| > N whence

Ogden’s lemma applies yielding a factorization w = xuyvz with the properties



380 E.V. Pribavkina

1)–3). In particular, the word xukyvkz is in C2 ∩ R for any positive integer k.
Since the length of the factor uyv does not exceed N , this factor cannot overlap
all three blocks of b’s in the word w because N < M < p2 = M ! + 1. Therefore
we have to analyze two cases.
Case 1. The entire factor uyv fits into one of the blocks bpi .

a a aa a

uyv

In this case u = bi, v = bj , y = bs, where 0 < r = i + j < N . Observe that r is
coprime with each of the numbers p1 = M !− 1, p2 = M !+ 1, p3 = (M + 1)!− 1
because r < M . For certainty, let uyv be situated inside the block bp1 . Then
the set Sb for the word xukyvkz consists of the numbers p1 + (k − 1)r, p2, p3.
Since g. c. d.(r, p2) = 1, there exists a positive integer k0 such that p2 divides
p1 + (k0 − 1)r. Then g. c. d.(p1 + (k0 − 1)r, p2) = p2 > 2 whence the restriction
1 fails for the numbers p1 + (k0 − 1)r, p2, p3. Therefore the word xuk0yvk0z does
not belong to the language C2 ∩R, a contradiction. Clearly, the same reasoning
applies in the cases where uyv is situated inside one of the blocks bp2 or bp3 .
Case 2. The factor uyv overlaps two adjacent blocks of b’s.

a a aa a

uyv

If one of the factors u or v contains an occurrence of the letter a, then the
word xukyvkz with k > 1 contains more than five occurrences of a and does
not belong to the language R. Thus, we have to study the situation when u =
bi, v = bj, y = bsabt or y = bsa2bt with 0 < i + j < N . Observe that at
least one of the numbers i and j is positive and hence coprime with each of
p1 = M !− 1, p2 = M ! + 1, p3 = (M + 1)!− 1.

Now assume that y = bsabt. Then the set Sb for the word xukyvkz consists
of the numbers p1 + (k − 1)i, p2 + (k − 1)j, p3. Suppose for certainty that i �= 0.
Since g. c. d.(i, p3) = 1, there exists a positive integer k0 such that p3 divides
p1 + (k0− 1)i. Then g. c. d.(p1 + (k0 − 1)i, p3) = p3 > 2 whence the restriction 3
fails for the numbers p1 + (k0 − 1)i, p2 + (k0 − 1)j, p3. We see that xuk0yvk0z /∈
C2 ∩R, a contradiction.

If y = bsa2bt, then the set Sb consists of p1, p2 + (k − 1)i, p3 + (k − 1)j, and
a completely analogous argument yields the same contradiction.

We thus see that the language C2 ∩R is not context-free, and hence neither
is the language C2.

In view of Theorem 1 we conjecture that also the languages formed by 2-
collapsing words over larger alphabets are not context-free.

3 A Lower Bound for the Length of 2-Collapsing Words

In this section we use some classical facts from the theory of free groups. They
all can be found for instance in [7, Chapter 1].
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Recall that the rank of a free group F (denoted rank(F )) is the number of
its free generators. The notion of rank can be also applied to subgroups of free
groups as any subgroup of a free group is free.

If F is a free group with rank(F ) > 1 and H is its subgroup of finite index
|F : H |, then H has finite rank and the ranks of F and H are related by Schreier’s
formula

|F : H | = rank(H)− 1
rank(F )− 1

. (6)

Let w be a word over an alphabet Π . By |w|a we denote the number of
occurrences of the letter a ∈ Π in w. Clearly, the mapping w �→ |w|a extends
to a homomorphism of the free group FG(Π) onto the group 〈Z,+〉. We fix an
ordering of Π and assign to each element g ∈ FG(Π) a |Π |-dimensional vector
(g) ∈ Z|Π| whose components are the numbers |g|a, where a runs over Π . The
mapping g �→ (g) is then a homomorphism of FG(Π) onto the free Abelian
group 〈Z|Π|,+〉. Therefore, if a letter a ∈ Π can be represented in the free group
FG(Π) as a group word in some elements g1, g2, . . . , gm ∈ FG(Π), then

(a) = n1(g1) + n2(g2) + · · ·+ nm(gm)

for some integers n1, n2, . . . , nm. In particular, the equality

1 = n1|g1|a + n2|g2|a + · · ·+ nm|gm|a

must hold true.

Lemma 2. If w is a 2-collapsing word over an alphabet Σ, |Σ| > 2, then for
an arbitrary choice of a letter b ∈ Σ, the set S of all inner segments of the
decomposition (2) of the word w has at least 2(|Σ| − 1) elements.

Proof. Let Π = Σ \ {b}. The set S = {p1, . . . , pm} ⊂ Π+ of inner segments of
the word w must satisfy the condition (ii) of Proposition 2. In particular, for
each P ⊂ S, the subgroup HP =

〈
P ∪ P · P −1

〉
of the group FG(Π) has finite

index in FG(Π). Observe that if P �= S, then the rank of HP is not greater than
|P | + |P | − 1 = |S| − 1 = m − 1. Indeed, if one fixes an element pi0 ∈ P , then
the subgroup HP is easily seen to be generated by the set P ∪ {pi0p

−1
j | pj ∈

P \ {pi0}}.
Now arguing by contradiction suppose that m < 2|Π |. Then from Schreier’s

formula (6) we get

|FG(Π) : HP | =
rank(HP )− 1
|Π | − 1

≤ m− 2
|Π | − 1

<
2|Π | − 2
|Π | − 1

= 2,

whence HP = FG(Π) for any P ⊂ S. By the condition (i) of Proposition 2 the
set S also generates FG(Π) so that HP = FG(Π) also for P = S.

Now fix a letter a ∈ Π and consider the set P = {pi ∈ S | |pi|a is even}.
Then P = S \ P = {pj | |pj |a is odd}. Since HP = FG(Π), the letter a can be
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expressed as a group word in P ∪ P · P −1
. As observed before the formulation

of the lemma, this implies the equality

1 =
∑
pi∈P

ni|pi|a +
∑

pj ,pk∈P

njk(|pj |a − |pk|a) (7)

for some integers ni, njk. However, by the choice of P the right hand side of (7)
is an even integer, a contradiction. Thus m ≥ 2|Π | = 2(|Σ| − 1).

In a certain sense, the obtained lower bound on the number of inner segments
of a 2-collapsing words is precise. Indeed, consider the following 2-collapsing word
over the 3-letter alphabet Σ = {a, b, c}:

w21 = aba2 · c2 · bab2a · c · bab · c · a · c · b · c · b. (8)

(It was constructed by Petrov, cf. [4].) Inspecting (8), one observes that choosing
c as the distinguished letter yields exactly 4 = 2(|Σ| − 1) inner segments. On
the other hand, other choices of distinguished letters in w21 produce more inner
segments: 5 for a and 6 for b. We are not aware of any example of a 2-collapsing
word over some alphabet Σ such that for any choice of a letter in Σ the set of
all inner segments of the word would consists of precisely 2(|Σ| − 1) elements,
however, none of the known results exclude the possibility that such a word may
exist.

Combining Lemma 2 with some known facts leads to the main result of this
section:

Theorem 2. The length of an arbitrary 2-collapsing word w over an alphabet
Σ with t letters is at least 2t2.

Proof. It is obvious that the length of any 2-collapsing word over the singleton
alphabet is at least 2, and it is observed in [12] that the length of any 2-collapsing
word over the 2-letter alphabet is at least 8. Thus, the theorem holds true for
|Σ| ≤ 2. Now let |Σ| > 2. By Lemma 2, for any choice of a letter b ∈ Σ,
the set of all inner segments of the word w with respect to this letter has at
least 2(|Σ| − 1) = 2(t − 1) elements. By definition of an inner segment, each
such segment immediately follows an occurrence of the letter b and immediately
precedes such an occurrence. Therefore b occurs in w at least 2(t−1)+1 = 2t−1
times. By Proposition 1 the word w is 2-full whence in particular the factor
b2 should occur in w. This gives at least one additional occurrence of b in w.
Altogether, b occurs in w at least 2t − 1 + 1 = 2t times. Since b was chosen in
an arbitrary way, each of t letters of Σ occurs in w at least 2t times whence the
length of w is at least 2t · t = 2t2.

The lower bound of Theorem 2 is precise for t = 1, 2, and for t = 3 it gives
the value 18 that is quite close to the exact value of the minimum length of a
2-collapsing word over 3 letters (recall that this exact value is 21, see [4]). It is
very interesting to see what happens in the case t = 4 in which the gap between
the value 32 of the lower bound provided by Theorem 2 and the value 58 of the
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best upper bound known so far (found by Martjugin, unpublished) still remains
rather large.

We have found our new lower bound by studying the number of inner seg-
ments of a 2-collapsing word. Perhaps it is worth mentioning that the approach
based on purely quantitative properties of inner segments (such as their number,
their lengths, etc) is not yet powerful enough to characterize 2-collapsing words
over alphabets with more than 2 letters, and thus, we doubt that it alone might
yield the precise value of the minimum length of such words. In order to justify
our claim, consider the mirror image ←−w 21 of the word w21 from (8). Of course,
the inner segments of ←−w 21 are nothing but the mirror images of the ones of
w21, and therefore, they share all possible numeric characteristics. Nevertheless
in contrast to w21 the word ←−w 21 is not 2-collapsing. Indeed, it can be easily
verified that ←−w 21 is not 2-compressing with respect to the automaton on Fig. 1,
which is in fact 2-compressible (for example, df(cbac) = 2).

0

1
c

2

c

3

c

4

c

a

a, b, c

b

a, b

a

b

b

a

Fig. 1. A 2-compressible automaton with df(←−w 21) = 1
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Abstract. We call a set of DAGs (directed acyclic graphs) semi-rational
if it is accepted by a Petri net. It is shown that the class of semi-rational
sets of DAGs coincides with the synchronization closure of Courcelles
class of recognizable sets of unranked, unordered trees (or forests).

1 Introduction

For sets of words various concepts proved to be equivalent: recognizability (invers
homomorphisms of finite monoids, or congruences of finite index), rationality (ac-
ceptance by finite automata), definability by regular expressions, definability by
monadic second-order logics over certain signatures, generation by right-linear
grammars, etc. These correspondences could be transferred to languages of in-
finite words and finite and infinite trees. However, a generalization to DAGs
(directed acyclic graphs) has failed. Even for such simple sub-classes like finite
ladders or grids it turned out that planar ladders cannot be accepted by grid
automata and the emptiness problem for finite grid automata is undecidable [1].
Courcelle [2], [3] has defined a multi-sorted algebra for finite graphs, however
with infinitely many sorts. As a consequence, even some non-recursive sets of
square grids are recognizable in the sense of [3]. For finite grids this concept of
recognizability is stronger than that of monadic second-order definability which
is stronger than that of acceptability with finite-state graph automata [1] which
is again stronger than acceptability by automata over planar DAGs [4], see [1].

We will study here semi-rational sets of DAGs: A set L of words over some
alphabet Σ is rational if there exists a finite automaton A s.t. L = {w ∈ Σ∗ | ∃
run r in A from the initial state to a terminal state s.t. w is the labelling of r}. In
analogy, we call a set L of DAGs over Σ semi-rational if there exists a Petri netN
s.t. L = {α | α is a DAG over Σ and ∃ a process π in N from the initial marking
to a terminal marking s.t. α is the labelling of π}. The emptiness problem of
semi-rational sets of DAGs is decidable: the DAG language of a terminal Petri
net is non-empty if and only if the word language of this Petri net is non-empty
if and only if at least one of the finitely many terminal markings is reachable
from the initial marking.

A graph is called ranked if the label of a node determines its number of
sons, and is called ordered if there exists a total ordering between all sons of
any node. The theory of ranked, ordered trees goes back to the early works of
Church, Büchi, Rabin, Doner, Thatcher, Trakhtenbrot. A good overview is given

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 385–396, 2005.
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in the TATA book project [5]. A ranked and ordered tree is usually regarded as
a correct term over a ranked alphabet. A tree automaton for binary trees may
be regarded as a finite set of Horn formulas p(fxy)← q(x) ∧ r(y), p(a)← true,
telling that tree fxy is accepted in state p if sub trees x and y are accepted in
states q and r, respectively, and leaf a is accepted in state p, see [6].

Most automata theoretical results transfer also to ordered, unranked trees,
see the well-known report [7]. Courcelle [8] has introduced many-sorted algebras
(magmas in his terminology) with equations for unordered and unranked trees
and forests and gave a precise definition of recognizability of sets of those trees
and forests. As a theory of unranked, unordered trees is not very well developed
we present a definition of their recognizability in the following chapter. We also
introduce a rather smooth concept of regular grammars for unranked and un-
ordered trees and forests that operates with empty (i.e, ε-labelled) nodes. The
equivalence of recognizability and regularity is shown in an Appendix. In chapter
3 we introduce a new version of synchronization of graphs. In chapter 4 Petri net
processes and their DAG semantics are introduced. We prove that semi-rational
sets of DAGs coincide with the synchronization closure of recognizable sets of
unranked, unordered trees. As an intermediate step we use merge grammars that
are a special case of the graph structure grammars of Starke [9].

2 Recognizable and Regular Sets of Unordered,
Unranked Trees

2.1 Tu,u-Magmas

Σ denotes a finite, non-empty alphabet of labels. A formal definition for a graph
in set theoretical terms is simple: A graph γ over Σ is a triple γ = (N,E, λ) of
two finite sets N of nodes and E ⊆ N × N of edges and a labelling mapping
λ : N → Σ. Two graphs γi = (Ni, Ei.λi) are isomorphic if there exists a bijective
mapping h : N1 → N2 with (v, v′) ∈ E1 ⇔ (h(v), h(v′)) ∈ E2 and λ2(h(v)) =
λ1(v) holds for all v, v′ in N1. We identify isomorphic graphs and thus deal with
abstract graphs. Directed acyclic graphs (DAGs) and trees are defined as usual
as special types of graphs. In this paper, the terms tree, forest, DAG, and graph
always refer to finite, directed, node labelled, unranked and unordered trees,
forests, DAGs, or graphs. A forest is a graph consisting of a family of trees. A
pomset is a transitive closed DAG. ΣTu,u , ΣFu,u , ΣDu,u and ΣGu,u denote the
classes of all trees, forests, dags and graphs over Σ. The sub-script u, u reminds
to ‘unranked’ and ‘unordered’. ΣP is the class of all pomsets over Σ. As pomsets
are never ordered or ranked we drop the sub-script u, u. A multi-set m over some
set M is a mapping m : M → N. m is often denoted by m =

∑
a∈M m(a) ·a.

The size |m| of m is |m| :=
∑

a∈M m(a). 0 denotes the empty multi-set m with
m(a) = 0 ∀a ∈M .

Courcelle [8] has introduced Tu,u-magmas to define recognizability for trees
and forests. The signature ΘΣ is the tuple ΘΣ := (S,OpΣ) where S consists
of the two sorts tree and forest , and OpΣ consists of the operations a of pro-
file forest → tree (for each a ∈ Σ), ι of profile tree → forest , + of profile
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forest × forest → forest , and φ of profile→ forest . T t and T f denote all ground
terms of sort tree and forest in ΘΣ . A Tu,u-magma M has the signature ΘΣ and is
defined as M = (M t,Mf , {aM}a∈Σ, ιM,+M, φM) of sets M t of objects of sort tree ,
Mf of objects of sort forest , and total mappings aM : Mf →M t, ιM : M t →Mf ,
+M : Mf ×Mf → Mf , φM :→ Mf . MΣ

i := (T t, T f , {a}a∈Σ, ι,+, φ) is the ini-
tial Tu,u-magma. One must adjoin to a Tu,u-magma the equations +(x1, x2) =
+(x2, x1), +(x1,+(x2, x3)) = +(+(x1, x2), x3), +(x1, φ) = x1 with nullary sym-
bols (variables) xi of sort forest , forcing + to be commutative and associative
with φ as a null-element. This ensures unranked and unordered objects. Let ∼
be the congruence on T t ∪ T f induced by those equations. One can identify a
tree (forest) over Σ with a term of sort tree (forest , respectively) in MΣ

i / ∼,
using the following standard interpretation: φ denotes the empty forest, + is the
union of multi-sets, ι(α) regards the tree α as the forest 1 ·α, consisting of the
only tree α. a(m) for a ∈ Σ is the tree with the root labelled with a and all
sons of this root are exactly the roots of all trees in the forest m. The derived
forest of Figure 2 is represented by any term congruent to ι(a(ι(a(φ)) + ι(b(φ))
+ι(b(ι(a(φ))))) + ι(a(ι(a(φ)) + ι(b(ι(b(φ)) +ι(a(φ)))))).

A set A of trees (or forests, respectively) over Σ is recognizable if there exist
a finite Tu,u-magma MA = (M t

A,Mf
A, {aA}a∈Σ, ιA,+A, φA), and a subset B of

M t
A (of Mf , respectively) s.t. A = i−1(B) holds for the initial homomorphism i :

Mi → MA. RecTu,u and RecFu,u denote the classes of all recognizable languages
of trees and forests.

In [8] Courcelle has introduced labels as a third sort plus an operation p of
profile label× forest → tree . However, using the labels instead as unary opera-
tions allows us to regard MΣ

i as an initial algebra and to define recognizability
via the initial homomorphism.

2.2 Regular Graph Grammars with ε-Rules

ε is here the symbol for the empty word, empty graph, and also the ‘empty label’.
We assume that ε is not a symbol in the alphabet Σ and define Σε := Σ ∪ {ε}.
A graph over Σε thus may possess nodes labelled with ε ( ε-nodes). Let α′ result
from a graph α over Σε by removing one ε-node v and declaring all sons of v in
α to be in α′ the sons of each father of v in α. In this case α′ is called a reduct of
α. The ε-equivalence of graphs over Σε is the reflexive, symmetric and transitive
closure of the reduct-relation. Figure 1 presents some ε-equivalent DAGs. Note,
reducing a tree over Σε may result in a forest over Σ.

A regular forest grammar (rfg) G is a tuple G = (V,Σ, S,R) of a finite set
V of variables, a finite set Σ of terminals, s.t. V ∩ Σ = ∅ and ε �∈ Σ ∪ V , a
start variable S ∈ V , and a finite set R ⊆ V × ((Σ ∪ {ε})×NV ) of rules. A rule
r = (X, (a,m)) with X ∈ V, a ∈ Σ ∪ {ε}, m a multi-set over V , is also denoted
by r = X → a(m), or as X → a if m equals the empty multi-set 0. X is the
premise and a(m) the conclusion of r. A conclusion a(m) will be interpreted
as in MΣ

i / ∼ as the tree of depth 1 with the root labelled with a and with the
multi-set m as leaves. A rule X → a(m) applies to a graph γ only on leaves:
choose in γ one leaf labelled with X and substitute it by the tree a(m) in the
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Fig. 1. Three ε-equivalent dags. α2 is a reduct of α3 and α1 is a reduct of a reduct of
α2

obvious way. For a rule r = X → a(m) and two graphs γ, γ′ we write γ ⇒r γ′ if
γ′ results from γ by applying rule r. ⇒G and ⇒∗, etc., are used as usual.

L(G) := {γ ∈ ΣGu,u | S ⇒∗ γ} is the set of graphs generated by G. A set of
forests is called regular if it is generated by some rfg. RegFu,u (RegFu,u,ε−free,
respectively) denote the class of all regular sets of forests (that can be generated
by ε-free rfgs, respectively).

Example 1.

ΣFu,u is itself a regular forest language and is generated by G0 = ({S}, Σ, S,R)
with the rules S → x, S → x(S), S → x(2 ·S) for all x ∈ Σε. The use of ε-
rules is here essential. A set A of forests is of unbounded rank if for any integer
k there exists a forest in A with an out-degree larger than k. Obviously, sets
of unbounded rank cannot be generated by a regular forest grammars without
ε-rules. Figure 2 gives an example of a derivation in G0. If one drops the rule
S → ε(2·S) in G0 one generates exactly ΣTu,u . ��

Fig. 2. A derivation in G0 with Σ = {a, b}

Let S ⇒∗ γ be a derivation in a rfg G = (V,Σ,R, S). Then γ must be a
forest with labels V ∪Σ where only the leaves of γ possess labels in V . A forest
with more than one root can only be obtained by ‘splitting’ the start variable
by some derivation S ⇒∗

G X ⇒ ε(X1 + X2 + ...).
A regular tree grammar (rtg) G = (V,Σ,R, S) is a rfg where for any rule S →

ε(m) ∈ R there holds |m| ≤ 1 and for any two rules S → ε(X), X → x(m) ∈ R
there holds x �= ε. A set of trees is called regular if it is generated by some rtg.
RegTu,u denotes the class of all regular sets of trees.
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2.3 Equivalence of Recognizable and Regular Sets
of Trees or Forests

The equivalence of recognizability and regularity is known for languages of words,
for ordered, ranked trees, and for ordered, unranked trees. It also holds for
unordered, unranked trees.

Theorem 1.

RecTu,u = RegTu,u , RecFu,u = RegFu,u

There exists an Appendix to this paper in the Publications of the Image
Recognition Lab (www.uni-koblenz.de/∼lb) in Koblenz. A proof of Theorem 1
is presented there.

3 Operations on Graphs

We need some operations on graphs and DAGs. Let Σ,Δ be two alphabets. A
(very) fine morphism h from Σ to Δ is a mapping h : Σ → Δε (h : Σ → Δ,
respectively). h(α) for a graph α = (N,E, λ) over Σ and a fine or very fine
homomorphism h is the graph (N,E, h ◦ λ) over Δ. The shuffle ‖ of two graphs
α1, α2 is the disjoint union of both. For a set M we define the big shuffle ‖∗ M
inductively by ‖0 M := {ε}, ‖n+1 M := M ‖ (‖n M), and ‖∗ M :=

⋃
n≥0 ‖n M .

Here ε is the empty graph ε = (∅, ∅, ∅). For M ⊆ Σ, a ∈ Σε, and α ∈ ΣGu,u

define merge[M,a](α) as the set of all graphs one can get by merging in α some
M -subset into a single node labelled with a. Here an M -subset is simply a set
of |M | nodes with M as their multi-set of labels. There are in general different
M -subsets that may be merged into a. Thus, merge[M,a](α) may possess non
isomorhic graphs.

We introduce a new (generalized) synchronization Syn[M,a] : ΣGu,u →
2ΓGu,u for M ⊆ Σ, a ∈ (Σ − M)ε, Γ := (Σ − M) ∪ {a} as follows: For a
graph α over Σ Syn[M,a](α) consists of all graphs over Γ that result from the
algorithm:
Anew := {α};
repeat until Anew = Aold:
begin Aold := Anew; Anew := Aold ∪

⋃
β∈Aold

merge[M,a](β) end;

Syn[M,a](α) := Anew ∩ 2ΓGu,u .
Thus, one repeatedly replaces in α sets M of labels by a new label a until there is
no further label from the set M left. All resulting graphs belong to Syn[M,a](α).
One may define this synchronization also for DAGs and pomsets:
SynD[M,a] : ΣDu,u → 2ΓDu,u maps a DAG α into the set Syn[M,a](α)∩2ΓDu,u ,
and
SynP [M,a] : ΣP → 2ΓP

maps a pomset α into the set of transitive closures of
SynD[M,a](α).

This synchronization is rather powerful. Even a fine homomorphism is ex-
pressible as a synchronization. There is another synchronization operation synP

M :
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ΣP × ΣP → 2ΣP
known in the theory of Petri nets, which was introduced by

Grabowski [10] under the name M − section for pomsets. To apply synP
M to

two pomsets αi both pomsets must possess the same number of a-nodes for any
a ∈ M , and any a-node of α1 is merged with some a-node of α2, keeping the
common label a, following the rule that the result must be acyclic. The set of
all transitive closures of all acyclic graphs obtainable in this way is the set of
pomsets in α1 synP

M α2. It is easily seen that a synP -operation can be obtained
by a multiple application of SynP-operations. Figure 3 presents two forests α, β
with α syn{a} β = {γ, δ} and SynD[{b, c}, x](δ) = {κ}. The directed arcs always
point from left to right.

Fig. 3. α syn{a} β = {γ, δ}, SynD[{b, c}, x](δ) = {κ}

The following lemma is rather obvious.

Lemma 1. RegFu,uis closed under union, fine homomorphism, inverse very fine
homomorphism, shuffle and big shuffle, but not under synchronization SynD or
synD.

RegFu,u,ε−free is closed under union, very fine homomorphisms, inverse very
fine homomorphisms, but not under synchronization SynD or synD.

RegTu,u is closed under union, fine homomorphism, inverse very fine homo-
morphism, but not under synchronization SynD, synD or shuffle.

4 Semi-rational and Semi-regular Sets of DAGs

4.1 Graph Grammars with Merge

Merge rules in a graph grammar allow to merge several variables into one. This
leaves the concept of context-free replacement rules. A merge graph grammar
(mgg) G is a tuple G = (V,Σ, S,R) of V,Σ, S as before and a finite set R =
Rreplace ∪Rmerge with Rreplace ⊆ V × ((Σ ∪ {ε})×NV ), the set of replacement
rules, and Rmerge ⊆ (V × V ) × V , the set of merge rules. A merge rule r =
((X1, X2), X) is denoted by r = X1 + X2 → X . For two graphs α, β we set
α⇒r β for a replacement rule r as before, and for a merge rule r = X1+X2 → X
if β results from α by choosing a leaf v1 labelled with X1 and a leaf v2 labelled
with X2, merging them into one leaf v with the new label X . Thus, all sons of v1

and v2 are the sons of v, the fathers of v1 and v2 are the fathers of v. We transfer
the notations ⇒∗ and L(G) canonically to mggs. Obviously, starting from the
variable S a mgg can generate only DAGs over V ∪ Σ where all V -nodes must
be leaves.
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A set L of DAGs is called semi-regular if L = {α ∈ ΣDu,u | S ⇒∗
G α} for

some mgg G = (V,Σ, S,R). We denote by Dmerge the class of all semi-regular
DAG languages.

Lemma 2. Dmerge is closed under fine homomorphisms, inverse very fine ho-
momorphisms, union, shuffle and SynD.

A sketch of the proof can be found in the Appendix.

Example 2.

Let La,b be the language of all non-empty DAGs over {a, b} where any chain
from some root to some leaf is labelled with a word in (ab)+. La,b is generate
by a mgg with the rules: S → ε(2·S) | a(T ), S + S → S, T → ε(2·T ) | b(S) | b,
T + T → T . ��

4.2 Petri Net DAG Semantics

We regard unrestricted Petri nets. This means that we allow multiple arcs, un-
bounded places, auto-concurrency, etc. A Petri net N over Σ is a tuple N
= (P, T,F , φ, s0, F ) of two finite sets P of places and T of transitions, P ∩T = ∅,
a multi set F over T × P ∪ P × T of arcs, a labelling mapping φ : T → Σε, an
initial state s0 ∈ NP , and a finite set F ⊆ NP of terminal states. A transition
labelled with a ∈ Σε is also called an a-transition. The multi sets tF and F t over
P , defined by tF(p) = F(t, p), F t(p) = F(p, t), denote the sets of output and
input places for a transition t. A state or marking s of N is a multi set over P . A
multi set M over T is fireable or enabled in a state s, s⇒M , iff

∑
t∈M F t ≤ s.

M fires from s to s′, s ⇒M s′, iff s ⇒M and s′ = s +
∑

t∈M (tF − F t) hold.
In case of s ⇒M all transitions in M are in state s concurrent. If a transition t
occurs in M with some multiplicity greater than 1 it is called auto-concurrent.
We use the standard concepts of a firing sequence x ∈ T ∗ from s to s′, s⇒x s′,
and of a process, see, e.g., [11]. A process π (for s ⇒x s′) describes a possible
concurrent execution of a firing s⇒x s′. It is a DAG over P ∪T , with an in- and
out-degree ≤ 1 for the P -nodes. The roots (leaves) of π are the multi sets s (s′,
respectively). A path from a root to a leave describes the life span of a single
token in s⇒x s′. Let ΠN (s, s′) be the set of all processes of N from s to s′. We
extend the labelling mapping φ of N to a fine morphism φ+ from T ∪ P to Σε

by setting φ+(x) := φ(x) for x ∈ T and φ+(x) := ε for x ∈ P .
Dt(N ) :=

⋃
s′∈F φ+(ΠN (s0, s

′)) is the (terminal) DAG language accepted by
N . Pt(N ) := {α ∈ ΣGu,u | ∃β ∈ Dt(N ) and α is the transitive closure of β} is
the pomset language accepted by N and is the standard pomset semantics of N .
A set of DAGs (pomsets) is called semi-rational if it is accepted by some Petri
net. DPN

t (PPN
t ) denotes the class of all semi-rational sets of DAGs (pomsets,

respectively).
As ε-transitions are allowed in Petri nets it is possible to transform N into a

‘normed’ Petri net without changing the terminal DAG language L, see, e.g., [11].
In a normed Petri net there has to hold: F : P×T ∪T×P → {0, 1}, s0 = 1·pstart,
for a certain start place, F t �= 0 for all t ∈ T , and F consists only of 0, the empty
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state, as terminal state. In contrast to the interleaving case in [12] there cannot
exist a run-place as it would destroy concurrency. A Petri net N ′ with 0 as final
state and a normed Petri net N ′′, both equivalent to the Petri net N of Figure 4,
are shown in Figure 5.

Fig. 4. A Petri net N with final state 1·p2, with a process π and the DAG α = φ+(π)

Fig. 5. Two Petri nets equivalent to N

4.3 DAG Characterization Theorem

For a set O of operations on languages and a set C of languages ClO(C) denotes
the smallest set of languages that contains all languages of C and is closed under
all operations of O. Let ε, (a) and (a

b ) denote the three discrete DAGs consisting
of none node, one node labelled with a, and two concurrent nodes labelled with a
and b. In the theory of concurrency a Dyck language DD :=‖∗ {a→ b} of DAGs
is known. The elements of DD are thus forests consisting of several concurrent
occurrences of the trivial chain a→ b. E.g., a→b

a→b is a DAG in DD. The set of all
‘linearizations’ of DD is the Dyck language over words. The following is known

Theorem 2. Algebraic Characterization Theorem

DPN
t = ClSynD, fine hom, inverse very fine hom (DD, {(a)}, {ε, (a)}).

Sketch of proof: In [13] and [11], PPN
t = ClsynP , fine hom, inverse very fine hom

(DD, {(a)}, {ε, (a
b )}) is shown. This proof follows an approach with a universal

context for Petri nets, generalizing the universal context in [14]. synP can be
expressed by SynP . Schuth has shown in [15] that the basic set {ε, (a

b )} may be
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replaced by the much simpler set {ε, a} and that this characterization also holds
for DAG languages, where, of course, SynP must be replaces by SynD. �

Theorem 2 is closely related to the work of Hack [12] on words and of
Grabowski [10] on pomsets. We now can state and prove the main result of
this paper.

Theorem 3. Graph Closure Characterization Theorem

ClSynD
(RegTu,u,ε−free) = ClSynD

(RegTu,u) = ClSynD
(RegFu,u) = Dmerge =

DPN
t .

Sketch of Proof: ClSynD
(RegTu,u,ε−free) ⊆ ClSynD

(RegTu,u) ⊆ ClSynD
(RegFu,u)

is obvious. Also, ClSynD
(RegFu,u) ⊆ Dmerge is obvious as Dmerge contains

RegFu,u and is closed under synchronization. Dmerge ⊆ DPN
t is a trivial exer-

cise: To get a Petri net from a mgg choose the variables as places. A merge rule
X1 + X2 → X becomes an ε-transition with X1 and X2 as input places and X
as an output place. A rule X → a(m) becomes an a-transition with X as the
only input place and all variables occurring in m as output places.

It remains to transform a Petri net N into a regular graph grammar G such
that the DAG semantics of N is the synchronization of the language of G. There
are two different techniques for regular forest grammars with ε-rules and for
regular tree grammars without. We show firstly DPN

t ⊆ ClSynD
(RegFu,u):

We have to construct for any Petri net N = (P, T,F , Σ, φ, s0, F ) an rgg
GN s.t. Dt(N ) is some synchronization of the forest language L(GN ). As N
may possess ε-transitions we assume that F = {0} holds. Let P = {p1, ..., pn}.
Define GN := (V,Δ, S,R) with V := P ∪· {S, S′}, Δ := {[t, i, j] | t ∈ T ∧ 0 ≤
i ≤ n ∧ 0 ≤ j ≤ F(pi, t)}, R := {S → s0 + S′, S′ → ε(2 ·S′), S′ → ε} ∪ {S′ →
[t, 0, 0](tF) | t ∈ T } ∪ {pi → [t, i, j] | t ∈ T ∧ 0 ≤ i ≤ n ∧ 0 ≤ j ≤ F(pi, t)}.
The idea is to generate in L(GN ) a skeleton of a valid process π of N . The
first rules generate a multi set of variables representing the initial state and an
arbitrary number of variables S′. Each variable S′ guesses one occurrence of a
transition t in π and produces the simple tree consisting of the root [t, 0, 0] and
the multi set tF as leaves. Each variable in tF represents one token produced
by a firing of t. The terminal [t, 0, 0] stands for a virtual firing of t, where not
all tokens on the input places of t might be available to enable a ‘real’ firing
of t, or, in other words, where not all required variables of tF may have been
produced by GN . A variable pi already generated represents a token on place
pi. This token on place pi guesses to which transition t with F(pi, t) > 0 it will
contribute by changing into [t, i, j]. To be more exact, [t, i, j] tells that the j-th
token on place pi with 1 ≤ j ≤ F(pi, t) required to fire t has been produced.
A forest derivable in GN consists thus of trivial trees of depth 1 of the form
[t, 0, 0](tF) or of depth 0 of the form pi or [t, i, j]. To get a valid process from such
a skeleton we apply for each t ∈ T a generalized synchronization SynD[E(t), t]
with E(t) := {[t, i, j] | 0 ≤ i ≤ n ∧ 0 ≤ j ≤ F(pi, t)}. As such a synchronization
must not produce cycles it is ensured that no occurrences of variables [t, i, j]
and [t, i′, j′] are merged where the occurrence of [t, i, j] represents a token that is
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produced by a side effect of a firing of this occurrence of [t, i′, j′]. Thus, Dt(N ) =
SynD[E(t0), φ(t0)] ◦ ... ◦ SynD[E(tm), φ(tm)](L(GN ) , for T = {t0, ..., tm}.

Example 3.

We present GN ′ for N ′ in Figure 5. The rules are: S → ε(2 ·p1 + 2 ·p2 + S′),
S′ → ε(2 ·S′) | ε | [t1, 0, 0] | [t3, 0, 0] | [t4, 0, 0] | [t2, 0, 0](2 ·p1 + 2 ·p2), p1 →
[t1, 1, 1] | [t1, 1, 2], and p2 → [t1, 2, 1] | [t2, 2, 1] | [t4, 2, 1]. A derivation in
GN ′ is given in Figure 6 that ends with a forest corresponding to the process
in Figure 4. Applying now all SynD[E(t), φ(t)] synchronization results in some
DAGs including that of Figure 4. ��

Fig. 6. A forest of 12 trees in L(GN ′)

DPN
t ⊆ ClSynD

(RegTu,u,ε−free): We cannot use the above trick to generate
sufficiently many concurrent variables S′, each of which generates a virtual firing
[t, 0, 0](tF), as we have no ε-rules in the grammar. The idea is to generate the
virtual firings on the run, whenever we have generated a certain variable that
belongs to F t. To distinguish uniquely one variable for this purpose we operate
with ordered places in N and without multiple arcs between a place and a
transition. Thus, without restriction we assume thatN = (P, T,F , Σ, φ, 1·p0, {0})
with P = {p0, p1, ..., pn} is a normed Petri net. Define G′

N := (V,Δ, S,R) with
V := P, S := p0, Δ := {[t, i] | t ∈ T ∧1 ≤ i ≤ n} and R is constructed as follows:
For t ∈ T define pt to be the place pi with F(pi, t) = 1 and F(pj , t) = 0 for all
j < i (note, F t �= 0 holds in a normed Petri net). For all pi, 1 ≤ i ≤ n, and for
all t ∈ T we add to R the rule pi → [t, i](tF) if pt = pi and the rule pi → [t, i]
if pt �= pi ∧ F(pi, t) = 1. As before, L(G′

N ) consists of all skeletons of possible
processes of N . But now the virtual firings [t, pt](tF) are not generated all at
once from a variable S′, but on the run whenever a distinguished variable pt is
available. L(G′

N ) consists thus of trees of arbitrary depth where all inner nodes
are [t, i]-terminals. We conclude as above that Dt(N ) = SynD[E(t0), φ(t0)] ◦
... ◦ SynD[E(tm), φ(tm)](L(G′

N ) for T = {t0, ..., tm} and E(t) = {[t, i] | 1 ≤ i ≤
F(pi, t)}. �
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Example 4.

We present G′
N ′′ for the normed Petri net N ′′ of Figure 5. The rules are p0 →

[t7, 0](p5 + p6) | [t5, 0](p1 + p2 + p3 + p4), p1 → [t1, 1] | [t9, 1](p2), p2 → [t1, 2] |
[t8, 2](p1), p3 → [t1, 3] | [t2, 3](p1 + p2 + p4 + p7) | [t11, 3](p4), p4 → [t4, 4] |
[t10, 4](p5), p5 → [t6, 5](p0), and p7 → [t12, 7](p3).

Fig. 7. A derivation in G′(N ′′)

Figure 7 presents an example of a derivation in G′
N ′′ . Applying SynD[E(ti), ε]

for 4 ≤ i ≤ 12 corresponds to the process of Figure 4, and a further application
of SynD[{[t1, 1], [t1, 2], [t1, 3]}, a], SynD[{[t2, 3]}, b] and SynD[{[t3, 6]}, a] results
in DAGs including that one from Figure 4. ��

Open Questions: Is it possible to extent the concept of Tu,u-magmas to ‘DAG-
magmas’ in such a way that recognizable sets of DAGs coincide with semi-
rational ones? Probably such ‘recognizing DAG-magmas’ will not be finite in
all aspects, similar to Courcelles magmas for finite graphs with infinitely many
sorts. Therefore a term ‘semi-recognizability’ might be better. A positive answer
would thus result in an equivalence of semi-recognizability, semi-rationality, and
semi-regularity for DAGs. Is there a similar Graph Closure Characterization
Theorem for Petri nets without ε-transitions?
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Abstract. It is well-known that the frequency of letters in primitive
morphic sequences exists. We show that the frequency of letters exists in
pure binary morphic sequences generated by non-primitive morphisms.
Therefore, the letter frequency exists in every pure binary morphic se-
quence. We also show that this is somewhat optimal, in the sense that
the result does not hold in the class of general binary morphic sequences.
Finally, we give an explicit formula for the frequency of letters.

1 Introduction

Several important results on the frequency of letters in morphic sequences were
established in the early 1970’s. In his influential paper from 1972, Cobham [3]
proved that the frequency of a letter in an automatic sequence, if it exists, is
rational. Michel [4, 5] showed in 1975 that if a morphic sequence is primitive,
then the frequency of all letters exists. These results can be used, for example,
to show that certain sequences are not k-automatic for any integer k ≥ 1 (see
[2]). For an interesting application of the frequency of letters to transcendental
number theory, see [1].

In this paper we are interested in the existence of the letter frequency in
binary morphic sequences. As we see in Example 1, the frequency of letters does
not have to exist in binary morphic sequences. We show, however, that in any
pure binary morphic sequence the letter frequency does exist. To be precise, we
prove that if a pure binary morphic sequence is generated by a non-primitive
morphism, then the frequency of letters exists. Using Michel’s result, the general
statement then follows. Finally, we give an explicit formula for the frequency of
letters.

2 Preliminaries

A morphism is a map ϕ : Σ∗ → Σ∗ that satisfies the identity ϕ(xy) = ϕ(x)ϕ(y)
for all words x, y ∈ Σ∗. Here Σ∗ is the free monoid over the finite alphabet Σ.
We say that ϕ is primitive if there exists an integer k ≥ 1 such that, for every
a, b ∈ Σ, the letter a occurs in ϕk(b).

C. De Felice and A. Restivo (Eds.): DLT 2005, LNCS 3572, pp. 397–408, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The letter a ∈ Σ is mortal if ϕk(a) = ε, where ε is the empty word, for some
integer k ≥ 1. The morphism ϕ is prolongable on the letter a ∈ Σ if ϕ(a) = ax
and x ∈ Σ∗ is a nonempty word that contains a non-mortal letter. In this case,
ϕ generates the infinite sequence

ϕω(a) := lim
n→∞

ϕn(a) = a xϕ(x)ϕ2(x) · · · ,

which is said to be a fixed point of ϕ. An infinite sequence generated in this
fashion is called a pure morphic sequence. A sequence is morphic if it is the
image of a pure morphic sequence under a letter-to-letter morphism and it is
binary if it is defined over a binary alphabet.

Let x ∈ Σ∗ be a finite word, and let y ∈ Σ∞ be a finite or an infinite word.
We call x a prefix of y if there exists a word y′ ∈ Σ∞ such that y = xy′. This is
denoted by x � y. If in addition x �= y, then the notation x � y is used.

Let w = w1w2 · · ·wn be a finite word, where wi ∈ Σ are letters. Note that,
in this paper, we index letters in a word starting from 1, not from 0. The length
n of w is denoted by |w| (we use the same notation for the absolute value of a
real number, but this should cause no ambiguity). The number of occurrences
of a ∈ Σ in w is denoted by |w|a.

Suppose that Σ = {a1, . . . , ad}. Then the incidence matrix M(ϕ) associated
with ϕ is M(ϕ) = (mi,j)1≤i,j≤d, where mi,j = |ϕ(aj)|ai .

Let w = w1w2 · · · be an infinite sequence. We define fw,a : Z+ → Z+∪{0} to
be the counting function for the occurrences of the letter a in w. More precisely,
if wk is the prefix of w of length k, then fw,a(k) = |wk|a. If the limit

lim
k→∞

fw,a(k)
k

exists, it is said to be the frequency of the letter a in w.

3 Preparatory Results

In this section we present a couple of further definitions and establish some
lemmata needed in the next section. We begin, however, by showing that the
frequency of letters does not exist in all binary morphic sequences:

Example 1. Define the infinite sequence

w = 0100110000111100000 · · ·= 020
120

021
121

022
122

023
123 · · ·

from the obvious rule. Let A(n) = 2n + 2n−1 − 2 be the position of the last 0 in
the nth block of 0’s. Similarly, let B(n) = 2n+1 − 2 be the position of the last 1
in the nth block of 1’s. Then fw,0

(
B(n)

)
= fw,0

(
A(n)

)
= 2n − 1, and so

fw,0

(
A(n)

)
A(n)

=
2n − 1

2n + 2n−1 − 2
−→ 2

3
and

fw,0

(
B(n)

)
B(n)

=
2n − 1

2n+1 − 2
−→ 1

2
,

as n −→∞. Consequently, the frequency of 0 in w does not exist.
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Observe that w is a binary morphic sequence. Namely, w = ψ(φω(a)), where
φ is the generating morphism φ : a �→ ab, b �→ cc, c �→ b and ψ is a coding
ψ : a �→ 0, b �→ 1, c �→ 0. Therefore there exist binary morphic sequences with
no frequency of letters. Of course, this same example shows that there exists
ternary pure morphic sequences for which the letter frequency does not exist.

Henceforth, we only consider pure binary morphic sequences generated by a
non-primitive morphism. Without loss of generality, we assume that ϕ : {0, 1} →
{0, 1}∗ is a non-primitive, binary morphism prolongable on 0. By the definition
of a non-primitive morphism, it follows that either ϕ(0) ∈ 0∗ or ϕ(1) ∈ 1∗.
If ϕ(0) ∈ 0∗, then the frequency of letters 0 and 1 trivially exists, for then
ϕω(0) = 0ω. This is why we now exclude this possibility from our discussion
and assume that 1 occurs in ϕ(0) and ϕ(1) ∈ 1∗. Thus the associated incidence
matrix M(ϕ) is of the form(

a 0
c d

)
:=

(
|ϕ(0)|0 |ϕ(1)|0
|ϕ(0)|1 |ϕ(1)|1

)
,

where now a, c, d > 0.
Since the sequences we are now considering are exclusively of the form ϕω(0),

we will use the shorthand fϕ = fϕω(0),0 for the counting function of 0 in ϕω(0).
In order to show that the frequency of letters in ϕω(0) exists, we define two

kinds of extremal morphisms, η and μ, which have the same associated matrix
as ϕ. We shall show that the counting functions fη, fμ trap the behavior of fϕ in
the sense that it will be enough to establish the existence of the letter frequency
in ηω(0) and μω(0).

Definition 1. We define the morphisms μ, η : {0, 1}∗ → {0, 1}∗ as follows:{
η(0) = 0 1c 0a−1,

η(1) = 1d,

{
μ(0) = 0a 1c,

μ(1) = 1d.

Note that M(η) = M(μ) = M(ϕ).

Remark 1. Suppose the morphism ψ : {0, 1}∗ → {0, 1}∗ has the same incidence
matrix as ϕ, that is, M(ψ) = M(ϕ). Then an easy proof by induction shows
that M(ψn) = M(ϕn). Consequently, for any u, v ∈ {0, 1}∗, we have

|u|0 ≥ |v|0 implies |ψn(u)|0 ≥ |ϕn(v)|0.

Lemma 1. For all k ≥ 1,
fμ(k) ≥ fϕ(k).

Proof. We argue by contradiction; suppose the statement is false. Let k be the
smallest positive integer such that fμ(k) < fϕ(k), and let n be the smallest
integer for which

|μn+1(0)| = |ϕn+1(0)| ≥ k. (1)
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Write μ(0) = 0a 1c = x1 · · ·xa+c and ϕ(0) = y1 · · · ya+c, where xi, yj ∈ {0, 1}.
Note that μn+1(0) = μn(x1 · · ·xa+c) and ϕn+1(0) = ϕn(y1 · · · ya+c). Let p, q be
the largest integers for which

|μn(x1 · · ·xp)| < k and |ϕn(y1 · · · yq)| < k.

Condition (1) implies that p, q < a + c. On the other hand, since n is minimal
and x1 = y1 = 0, it follows that p, q > 0.

Due to the minimality of k, the letter in ϕω(0) indicated by k, which occurs
in the block ϕn(yq+1), must be 0. Hence also yq+1 = 0. Moreover, we claim that
xp+1 = 0. For if xp+1 = 1, then 0a is a prefix of x1 · · ·xp, and thus

fϕ(k) > fμ(k) ≥ |μn(x1 · · ·xp)|0 = |μn(x1, . . . , xa+c)|0 = |ϕn+1(0)|0 ≥ fϕ(k),

a contradiction. Thus xp+1 = 0, and hence x1 · · ·xp+1 = 0p+1.
We have the following three cases to consider:
Case(i). Suppose |y1 · · · yq|0 > |x1 · · ·xp|0. Then |y1 · · · yq|0 ≥ |x1 · · ·xp+1|0,

and since x1 · · ·xp+1 = 0p+1, we trivially have |y1 · · · yq|1 ≥ |x1 · · ·xp+1|1. There-
fore,

k > |ϕn(y1 · · · yq)| ≥ |μn(x1 · · ·xp+1)| ≥ k,

a contradiction.
Case (ii). Suppose |y1 · · · yq|0 < |x1 · · ·xp|0. Then |y1 · · · yq+1|0 ≤ |x1 · · ·xp|0,

and so |ϕn(y1 · · · yq+1)|0 ≤ |μn(x1 · · ·xp)|0. Consequently,

fμ(k) < fϕ(k) ≤ |ϕn(y1 · · · yq+1)|0 ≤ |μn(x1 · · ·xp)|0 ≤ fμ(k),

a contradiction.
Case (iii). Suppose |y1 · · · yq|0 = |x1 · · ·xp|0. Denote h = |μn(x1 · · ·xp)| and

l = |ϕn(y1 · · · yq)|. As |y1 · · · yq|0 = |x1 · · ·xp|0 and x1 · · ·xp = 0p, it follows
that h ≤ l and fμ(h) = fϕ(l). Now the assumption fμ(k) < fϕ(k) implies that
the prefix of μn(xp+1) of length k − h has less 0’s than the prefix of ϕn(yq+1)
of length k − l. But as xp+1 = 0 and yq+1 = 0, this is the same as saying
fμ(k − h) < fϕ(k − l). Since h ≤ l < k, it is plain that fϕ(k − l) ≤ fϕ(k − h).
Hence fμ(k − h) < fϕ(k − h), contradicting the minimality of k. This concludes
the proof.

Lemma 2. For all k ≥ 1,
fη(k) ≤ fϕ(k) .

Proof. Assume the contrary. Suppose k is the smallest integer such that the
inequality fη(k) > fϕ(k) holds, and let n be the smallest integer for which

|ηn+1(0)| = |ϕn+1(0)| ≥ k. (2)

Write η(0) = 0 1c0a−1 = x1 · · ·xa+c and ϕ(0) = y1 · · · ya+c with xi, yj ∈ {0, 1}.
Note that ηn+1(0) = ηn(x1 · · ·xa+c) and ϕn+1(0) = ϕn(y1 · · · ya+c). Let p, q be
the largest integers for which

|ηn(x1 · · ·xp)| < k and |ϕn(y1 · · · yq)| < k.
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Condition (2) implies that p, q < a + c. Since n is minimal and x1 = y1 = 0, we
also have p, q > 0.

Since k is assumed to be minimal, the letter of ηω(0) occurring at position
k, which occurs in the block ηn(xp+1), must be 0, and so also xp+1 = 0. Thus,
since p > 0, we see that 01c must be a prefix of x1 · · ·xp. We have the following
three cases to consider:

Case (i). Suppose |x1 · · ·xp|0 > |y1 · · · yq|0. This assumption and the fact
that |x1 · · ·xp|1 = c, respectively, imply

|x1 · · ·xp|0 ≥ |y1 · · · yq+1|0 and |x1 · · ·xp|1 ≥ |y1 · · · yq+1|1. (3)

Thus
k > |ηn(x1 · · ·xp)| ≥ |ϕn(y1 · · · yq+1)| ≥ k, (4)

a contradiction.
Case(ii). Suppose |x1 · · ·xp|0 < |y1 · · · yq|0. This implies

fϕ(k) < fη(k) ≤ |ηn(x1 · · ·xp+1)|0 ≤ |ϕn(y1 · · · yq)|0 ≤ fϕ(k),

a contradiction.
Case(iii). Suppose |x1 · · ·xp|0 = |y1 · · · yq|0. If yq+1 = 1, then the inequal-

ities in (3) hold, and so does (4), a contradiction. Thus yq+1 = 0. Denote
h := |ηn(x1 · · ·xp)| and l := |ϕn(y1 · · · yq)|. As |x1 · · ·xp|0 = |y1 · · · yq|0 and
|x1 · · ·xp|1 = c ≥ |y1 · · · yq|1, it follows that h ≥ l and fη(h) = fϕ(l). Now
the assumption fη(k) > fϕ(k) implies that the prefix of ηn(xp+1) of length
k − h must contain more 0’s that the prefix of ϕn(yq+1) of length k − l. But
as xp+1 = yq+1 = 0, this means that fη(k − h) > fϕ(k − l). Since h ≥ l, it is
certainly true that fη(k − l) ≥ fη(k − h). Consequently, fη(k − l) > fϕ(k − l),
contradicting the minimality of k. This completes the proof.

Lemma 3. For all n ≥ 1,

|ϕn(0)|0 = an and |ϕn(0)|1 =

⎧⎨⎩
can−1n if a = d,

c
dn − an

d− a
if a �= d.

(5)

Proof. An easy proof by induction shows that(
|ϕn(0)|0
|ϕn(0)|1

)
=
(
a 0
c d

)n (1
0

)
and

(
a 0
c d

)n

=
(

an 0
c
∑n−1

i=0 an−1−id i dn

)
for all n ≥ 0. Therefore, it is enough to observe that

c

n−1∑
i=0

an−1−id i = can−1
n−1∑
i=0

(
d

a

)i

=

⎧⎨⎩
can−1n if a = d,

c
dn − an

d− a
if a �= d.

Lemma 4. The limit

α0 := lim
n→∞

|ϕn(0)|0
|ϕn(0)|
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exists, and moreover

α0 =

⎧⎨⎩
0 if a ≤ d,

a− d

a− d + c
if a > d.

(6)

Proof. First, assume that a = d. Using the equations in Lemma 3, we see that

|ϕn(0)|0
|ϕn(0)| =

|ϕn(0)|0
|ϕn(0)|0 + |ϕn(0)|1

=
an

an + can−1n
=

1

1 +
cn

a

,

so that the fraction converges to 0 as n −→∞.
Now suppose that a �= d. As above, we get

|ϕn(0)|0
|ϕn(0)| =

|ϕn(0)|0
|ϕn(0)|0 + |ϕn(0)|1

=
an

an + c
dn − an

d− a

=
1

1 + c

(
d
a

)n − 1
d− a

,

and so we see that, as n −→ ∞, the fraction converges to (a− d)/(a− d + c) if
d < a, and to 0 if d > a. Accordingly, the limit exists in each case and equals
the asserted value.

Lemma 5. Let G ≥ 1 be an integer. Then every finite prefix w of μω(0) has a
factorization of the form

w = μn1(0)μn2(0) · · ·μnr(0)x, (7)

where r ≥ 0, n1 ≥ n2 ≥ · · · ≥ nr ≥ G, and either

|x| ≤ |μG(0)| or x � μnr (1c).

Proof. We verify the claim by induction on |w|. If |w| ≤ |μG(0)|, we may take
r = 0 and x = w. Now assume that |w| > |μG(0)|. Let n be the integer for which

|μn(0)| < |w| ≤ |μn+1(0)| = |μn(0a 1c)|.

Since |w| > |μG(0)|, we have n ≥ G. Now there are two cases to consider:
Case (i). Suppose |μn(0a)| < |w| ≤ |μn(0a 1c)|. Then we can write w =

μn(0a)x =
(
μn(0)

)a
x, where x �

(
μn(1)

)c. Since n ≥ G, we have a factorization
in the correct form.

Case (ii). Suppose |μn(0)| < |w| ≤ |μn(0a)|. Then w =
(
μn(0)

)i
w′ for some

1 ≤ i ≤ a and w′ � μn(0). Because w′ is a prefix of μω(0), we can apply the
induction assumption to find a factorization

w′ = μn1(0)μn2(0) · · ·μnr (0)x,

where r ≥ 0, n1 ≥ n2 ≥ · · · ≥ nr ≥ G, and either |x| ≤ |μG(0)| or x �
(
μnr (1)

)c.
Since n > n1, the factorization

w =
(
μn(0)

)i
μn1(0)μn2(0) · · ·μnr(0)x

is of the required form. This concludes our proof.
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Lemma 6. Let G ≥ 1 be an integer. Then every finite prefix w of ηω(0) has a
factorization of the form

w = ηn1
(
01c0m1

)
ηn2

(
01c0m2

)
· · · ηnr

(
01c0mr

)
x, (8)

where r ≥ 0, n1 > n2 > · · · > nr ≥ G, 0 ≤ m1,m2, . . . ,mr ≤ a− 1, and either

|x| ≤ |ηG(0)| or ηnr+1(0) � x � ηnr+1(01c)

with nr > nr+1 ≥ G.

Proof. The proof is similar to the proof of Lemma 5, and we omit the details.

4 The Existence of the Frequency of Letters

We are ready to employ the results from the previous section to establish some
existence results about the frequency of letters.

Proposition 1. Assume a ≤ d. Then the frequency of letters in ϕω(0) exists.

Proof. Denote ln = |ϕn(0)|. We claim that the frequency of the letter 0 is 0, and
thus 1 occurs with frequency 1. It is enough to show that

Hn = max
{

fϕ(k)
k

: ln ≤ k ≤ ln+1

}
−→ 0

as n→∞.
To do that, we write ϕ(0) = 0x, where x is a nonempty word in {0, 1}∗, so

that ϕn+1(0) = ϕn(0)ϕn(x). We denote γ(n) = |ϕn(x)|0. Since

i

j
≤ i + 1

j + 1

whenever 0 < i ≤ j, it follows that

fϕ(k)
k

≤ |ϕn(0) 0γ(n)|0
|ϕn(0) 0γ(n)| (9)

for all ln ≤ k ≤ ln+1. Using the formulas in (5), we get

|ϕn(0) 0γ(n)|0 = |ϕn+1(0)|0 = an+1 (10)

and

|ϕn(0) 0γ(n)| = |ϕn(0)0γ(n)|0 + |ϕn(0)0γ(n)|1 = an+1 + |ϕn(0)|1

=

⎧⎪⎨⎪⎩
an+1 + can−1n if a = d,

an+1 + c
dn − an

d− a
if a < d.

(11)
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Now Inequality (9) implies that

Hn ≤
|ϕn(0) 0γ(n)|0
|ϕn(0) 0γ(n)| .

But here, by (10) and (11),

Hn ≤
|ϕn(0) 0γ(n)|0
|ϕn(0) 0γ(n)| −→ 0

as n −→∞, which can be verified by a similar computation as in Lemma 4. This
concludes the proof.

Proposition 2. Assume a > d. Then the frequency of letters exists in μω(0).

Proof. By Lemma 4, we know that the limit limn→∞ |μn(0)|0/|μn(0)| exists, and
we denote it by α0. We shall prove that fμ(k)/k converges to α0, so that α0 is
the frequency of 0 and 1− α0 the frequency of 1.

Let ε > 0. We will show that, for every sufficiently long prefix w of μω(0),∣∣∣∣ |w|0|w| − α0

∣∣∣∣ < ε,

which will conclude the proof.
Let m1 be an integer such that∣∣∣|μn(0)|0 − α0|μn(0)|

∣∣∣ < ε

2
|μn(0)|

for all n ≥ m1.
Next, since a > d, we see that

|μn(1)|
|μn(0)| ≤

dn

an
−→ 0

as n→∞. Thus there exists an integer m2 such that

|μn(1)|
|μn(0)| <

ε

2c

for all n ≥ m2.
Now denote G = max{m1,m2, 1}. Let w be a prefix of μω(0) of length

|w| > 2|μG(0)|
ε

.

As in Lemma 5, we write

w = μn1(0)μn2(0) · · ·μnr(0)x,
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where r ≥ 0, n1 ≥ n2 ≥ · · · ≥ nr ≥ G, and either |x| ≤ |μG(0)| or x � μnr (1c).
Then ∣∣∣|w|0 − α0|w|

∣∣∣ =
∣∣∣ r∑

i=1

(
|μni(0)|0 − α0|μni(0)|

)
+
(
|x|0 − α0|x|

)∣∣∣
≤

r∑
i=1

∣∣∣|μni(0)|0 − α0|μni(0)|
∣∣∣ +

∣∣|x|0 − α0|x|
∣∣

<
ε

2

r∑
i=1

|μni(0)|+ |x| <

⎧⎪⎨⎪⎩
ε

2
|w|+ |μG(0)| if |x| ≤ |μG(0)|,

ε

2
|w|+ c|μnr (1)| if x � μnr(1c).

Thus

∣∣∣ |w|0|w| − α0

∣∣∣ <
⎧⎪⎪⎨⎪⎪⎩

ε

2
+
|μG(0)|
|w|

ε

2
+ c
|μnr (1)|
|w|

≤

⎧⎪⎪⎨⎪⎪⎩
ε

2
+

ε

2
ε

2
+ c
|μnr (1)|
|μnr (0)|

≤

⎧⎪⎨⎪⎩
ε

2
+

ε

2
ε

2
+ c

ε

2c

=

{
ε,

ε.

This completes the proof.

Proposition 3. Assume a > d. Then the frequency of letters exists in ηω(0).

Proof. We proceed as in Proposition 2. We shall prove that 0 occurs in ηω(0)
with the frequency α0 = limn→∞ |ηn(0)|0/|ηn(0)|.

Let ε > 0. We will show that, for every sufficiently long prefix w of μω(0),∣∣∣∣ |w|0|w| − α0

∣∣∣∣ < ε.

Let m1 be an integer such that∣∣∣|ηn(0)|0 − α0|ηn(0)|
∣∣∣ < ε

3a
|ηn(0)|

for all n ≥ m1.
Next, suppose k1 > k2 > · · · > kl ≥ 1. Then, since a > d, we see that∑l
i=1 |ηki(1)|∑l
i=1 |ηki(0)|

≤
∑l

i=1 d ki∑l
i=1 aki

≤
l∑

i=1

(
d

a

)ki

≤
∞∑

j=kl

(
d

a

)j

=
(

d

a

)kl a

a− d
<

ε

3c
,

whenever kl ≥ m2 for some positive integer m2. Note that if n ≥ m2, then

|ηn(1)|
|ηn(0)| <

(
d

a

)n

<
ε

3c
.

Now denote G = max{m1,m2, 1}. Let w be a prefix of ηω(0) of length

|w| > 3|ηG(0)|
ε

.



406 Kalle Saari

As in Lemma 6, we write

w = ηn1
(
01c0m1

)
ηn2

(
01c0m2

)
· · · ηnr

(
01c0mr

)
x,

where r ≥ 0, n1 > n2 > · · · > nr ≥ G, 0 ≤ m1,m2, . . . ,mr ≤ a− 1, and either

|x| ≤ |ηG(0)| or ηnr+1(0) � x � ηnr+1(01c) (12)

with nr > nr+1 ≥ G. Then∣∣∣|w|0 − α0|w|
∣∣∣ =

∣∣∣ r∑
i=1

(|ηni(01c0mi)|0 − α0|ηni(01c0mi)|) +
(
|x|0 − α0|x|

)∣∣∣
=

∣∣∣ r∑
i=1

(mi + 1)
(
|ηni(0)|0 − α0|ηni(0)|

)
− α0

r∑
i=1

c|ηni(1)|+
(
|x|0 − α0|x|

)∣∣∣
≤

r∑
i=1

(mi + 1)
∣∣∣|ηni(0)|0 − α0|ηni(0)|

∣∣∣ + α0

r∑
i=1

c|ηni(1)|+
∣∣|x|0 − α0|x|

∣∣
≤

r∑
i=1

a
∣∣∣|ηni(0)|0 − α0|ηni(0)|

∣∣∣ + c

r∑
i=1

|ηni(1)|+
∣∣|x|0 − α0|x|

∣∣
≤ ε

3

r∑
i=1

|ηni(0)|+ c

r∑
i=1

|ηni(1)|+
∣∣|x|0 − α0|x|

∣∣. (13)

We analyze the two cases in (12) separately. First, assume that |x| ≤ |ηG(0)|.
Then ∣∣∣ |w|0|w| − α0

∣∣∣ ≤ ε

3

∑r
i=1 |ηni(0)|
|w| + c

∑r
i=1 |ηni(1)|
|w| +

∣∣|x|0 − α0|x|
∣∣

|w|

≤ ε

3

∑r
i=1 |ηni(0)|∑r
i=1 |ηni(0)| + c

∑r
i=1 |ηni(1)|∑r
i=1 |ηni(0)| +

|x|
|w|

≤ ε

3
+ c

ε

3c
+
|ηG(0)|
|w| ≤ ε

3
+

ε

3
+

ε

3
= ε.

Next, assume that
ηnr+1(0) � x � ηnr+1(01c)

with nr+1 ≥ G. Then since nr+1 ≥ G,∣∣|x|0 − α0|x|
∣∣ ≤ ∣∣∣|ηnr+1(0)|0 − α0|ηnr+1(0)|

∣∣∣ + α0|ηnr+1(1c)|

≤ ε

3
|ηnr+1(0)|+ c|ηnr+1(1)|,

and therefore by (13),

∣∣∣|w|0 − α0|w|
∣∣∣ ≤ ε

3

r+1∑
i=1

|ηni(0)|+ c

r+1∑
i=1

|ηni(1)|.
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Finally, as above, we get∣∣∣ |w|0|w| − α0

∣∣∣ ≤ ε

3

∑r+1
i=1 |ηni(0)|
|w| + c

∑r+1
i=1 |ηni(1)|
|w|

≤ ε

3

∑r+1
i=1 |ηni(0)|∑r+1
i=1 |ηni(0)|

+ c

∑r+1
i=1 |ηni(1)|∑r+1
i=1 |ηni(0)|

≤ ε

3
+ c

ε

3c
< ε.

This concludes our proof.

Theorem 1. The frequency of letters exists in ϕω(0). Furthermore, the fre-
quency of 0 is α0, and the frequency of 1 is α1, where

α0 =

⎧⎨⎩
0 if a ≤ d,

a− d

a− d + c
if a > d,

and α1 =

⎧⎨⎩1 if a ≤ d,
c

a− d + c
if a > d.

Proof. We have proved the existence of the frequency in Proposition 1 when
a ≤ d. In the proof of the proposition, we saw that the frequency of 0 is 0 and
the frequency of 1 is 1.

Now assume a > d. Referring to Lemma 4, let

α0 = lim
n→∞

|ϕn(0)|0
|ϕn(0)| .

By Lemmas 2 and 1,
fη(k) ≤ fϕ(k) ≤ fμ(k)

for all k ≥ 1. Therefore, by Propositions 2 and 3,

∣∣fϕ(k)
k

− α0

∣∣ ≤ max
{∣∣fμ(k)

k
− α0

∣∣, ∣∣fη(k)
k

− α0

∣∣} −→ 0

as k −→∞, and thus α0 is the frequency of 0.
The formulas for α0 and α1 in the statement come from (6) and from the

identity α1 = 1− α0. This completes the proof.

Remark 2. Suppose ϕ is primitive and its associated incidence matrix is

M(ϕ) =
(
a b
c d

)
.

The primitivity of ϕ implies that b, c �= 0. If ϕ is prolongable in 0, then by the
result of Michel, the frequency of letters 0 and 1 in ϕω(0) exists and equals,
respectively,

r − d

r − d + c
and

c

r − d + c
, (14)
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where

r =
a + d +

√
(a− d)2 + 4bc
2

.

This formula can be found in more general form from [2, Theorem 8.4.7]. Using
the formulas in Theorem 1, it is easy to see that (14) holds true even if ϕ is
non-primitive.
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